Mean curvature and least energy solutions for the critical Neumann problem with weight

J. Chabrowski

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 3, page 715-733
  • ISSN: 0392-4041

Abstract

top
In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.

How to cite

top

Chabrowski, J.. "Mean curvature and least energy solutions for the critical Neumann problem with weight." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 715-733. <http://eudml.org/doc/195200>.

@article{Chabrowski2002,
abstract = {In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.},
author = {Chabrowski, J.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {715-733},
publisher = {Unione Matematica Italiana},
title = {Mean curvature and least energy solutions for the critical Neumann problem with weight},
url = {http://eudml.org/doc/195200},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Chabrowski, J.
TI - Mean curvature and least energy solutions for the critical Neumann problem with weight
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 715
EP - 733
AB - In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.
LA - eng
UR - http://eudml.org/doc/195200
ER -

References

top
  1. ADIMURTHI, - MANCINI, G., The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), 9-25. Zbl0836.35048MR1205370
  2. ADIMURTHI, - MANCINI, G., Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18. Zbl0804.35036MR1301449
  3. ADIMURTHI, - MANCINI, G.- YADAVA, S. L., The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), 591-631. Zbl0847.35047MR1318082
  4. ADIMURTHI, - PACELLA, F.- YADAVA, S. L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350. Zbl0793.35033MR1218099
  5. ADIMURTHI, - PACELLA, F.- YADAVA, S. L., Characterization of concentration points and L -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), 31-68. Zbl0814.35029
  6. ADIMURTHI, - YADAVA, S. L., Critical Sobolev exponent problem in R N ( N 4 ) with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), 275-284. Zbl0735.35063MR1081711
  7. BRÉZIS, H.- NIRENBERG, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477. Zbl0541.35029MR709644
  8. CHABROWSKI, J.- WILLEM, M., Least energy solutions of a critical Neumann problem with weight, to appear in Calc. Var. Zblpre01942729
  9. DJADLI, Z., Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds, Calc. Var., 8 (1999), 293-326. Zbl0953.58017MR1700267
  10. DJADLI, Z.- DRUET, O., Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var., 12 (2001), 59-84. Zbl0998.58008MR1808107
  11. DRUET, O., The best constants problem in Sobolev inequalities, Math. Ann., 314 (1999), 327-346. Zbl0934.53028MR1697448
  12. ESCOBAR, J. F., Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), 623-657. Zbl0635.35033MR896771
  13. GROSSI, M.- PACELLA, F., Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. of the Royal Society of Edinburgh, 116A (1990), 23-43. Zbl0724.35041MR1076352
  14. GUI, C.- GHOUSSOUB, N., Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474. Zbl0955.35024MR1658569
  15. HEBEY, E., Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, Springer (1996), 16-35. Zbl0866.58068MR1481970
  16. HEBEY, E.- VAUGON, M., Meilleures constantes dans le théorème d'inclusion de Sobolev, I.H.P. Analyse non-linéaire, 13 (1996), 57-93. Zbl0849.53035MR1373472
  17. LIONS, P. L., The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), 145-201 and 45-120. Zbl0522.49007MR834360
  18. LIONS, P. L.- PACELLA, F.- TRICARICO, M., Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37, No. 2 (1988), 301-324. Zbl0631.46033MR963504
  19. NI, W. M.- PAN, X. B.- TAKAGI, L., Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), 1-20. Zbl0785.35041MR1174600
  20. NI, W. M.- TAKAGI, L., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851. Zbl0754.35042MR1115095
  21. WANG, X. J., Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. Zbl0766.35017MR1125221
  22. WANG, Z. Q., On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lect. in Appl. Math., 29 (1993), 433-442. Zbl0797.35012MR1247744
  23. WANG, Z. Q., Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), 671-694. Zbl0817.35030MR1305937
  24. WANG, Z. Q., High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. of Edinburgh, 125A (1995), 1013-1029. Zbl0877.35050
  25. WANG, Z. Q., The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), 1533-1554. Zbl0829.35041MR1329855
  26. WANG, Z. Q., Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonl. Anal. T.M.A., 27, No. 11 (1996), 1281-1306. Zbl0862.35040MR1408871
  27. WANG, Z. Q., Existence and nonexistence of G -least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., 8 (1999), 109-122. Zbl0928.35056MR1680674
  28. ZHU, M., Sobolev inequalities with interior norms, Calc. Var., 8 (1999), 27-43. Zbl0918.35029MR1666870

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.