Mean curvature and least energy solutions for the critical Neumann problem with weight
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 715-733
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topChabrowski, J.. "Mean curvature and least energy solutions for the critical Neumann problem with weight." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 715-733. <http://eudml.org/doc/195200>.
@article{Chabrowski2002,
abstract = {In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.},
author = {Chabrowski, J.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {715-733},
publisher = {Unione Matematica Italiana},
title = {Mean curvature and least energy solutions for the critical Neumann problem with weight},
url = {http://eudml.org/doc/195200},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Chabrowski, J.
TI - Mean curvature and least energy solutions for the critical Neumann problem with weight
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 715
EP - 733
AB - In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.
LA - eng
UR - http://eudml.org/doc/195200
ER -
References
top- ADIMURTHI, - MANCINI, G., The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), 9-25. Zbl0836.35048MR1205370
- ADIMURTHI, - MANCINI, G., Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18. Zbl0804.35036MR1301449
- ADIMURTHI, - MANCINI, G.- YADAVA, S. L., The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), 591-631. Zbl0847.35047MR1318082
- ADIMURTHI, - PACELLA, F.- YADAVA, S. L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350. Zbl0793.35033MR1218099
- ADIMURTHI, - PACELLA, F.- YADAVA, S. L., Characterization of concentration points and -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), 31-68. Zbl0814.35029
- ADIMURTHI, - YADAVA, S. L., Critical Sobolev exponent problem in () with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), 275-284. Zbl0735.35063MR1081711
- BRÉZIS, H.- NIRENBERG, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477. Zbl0541.35029MR709644
- CHABROWSKI, J.- WILLEM, M., Least energy solutions of a critical Neumann problem with weight, to appear in Calc. Var. Zblpre01942729
- DJADLI, Z., Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds, Calc. Var., 8 (1999), 293-326. Zbl0953.58017MR1700267
- DJADLI, Z.- DRUET, O., Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var., 12 (2001), 59-84. Zbl0998.58008MR1808107
- DRUET, O., The best constants problem in Sobolev inequalities, Math. Ann., 314 (1999), 327-346. Zbl0934.53028MR1697448
- ESCOBAR, J. F., Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), 623-657. Zbl0635.35033MR896771
- GROSSI, M.- PACELLA, F., Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. of the Royal Society of Edinburgh, 116A (1990), 23-43. Zbl0724.35041MR1076352
- GUI, C.- GHOUSSOUB, N., Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474. Zbl0955.35024MR1658569
- HEBEY, E., Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, Springer (1996), 16-35. Zbl0866.58068MR1481970
- HEBEY, E.- VAUGON, M., Meilleures constantes dans le théorème d'inclusion de Sobolev, I.H.P. Analyse non-linéaire, 13 (1996), 57-93. Zbl0849.53035MR1373472
- LIONS, P. L., The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), 145-201 and 45-120. Zbl0522.49007MR834360
- LIONS, P. L.- PACELLA, F.- TRICARICO, M., Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37, No. 2 (1988), 301-324. Zbl0631.46033MR963504
- NI, W. M.- PAN, X. B.- TAKAGI, L., Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), 1-20. Zbl0785.35041MR1174600
- NI, W. M.- TAKAGI, L., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851. Zbl0754.35042MR1115095
- WANG, X. J., Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. Zbl0766.35017MR1125221
- WANG, Z. Q., On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lect. in Appl. Math., 29 (1993), 433-442. Zbl0797.35012MR1247744
- WANG, Z. Q., Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), 671-694. Zbl0817.35030MR1305937
- WANG, Z. Q., High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. of Edinburgh, 125A (1995), 1013-1029. Zbl0877.35050
- WANG, Z. Q., The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), 1533-1554. Zbl0829.35041MR1329855
- WANG, Z. Q., Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonl. Anal. T.M.A., 27, No. 11 (1996), 1281-1306. Zbl0862.35040MR1408871
- WANG, Z. Q., Existence and nonexistence of -least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., 8 (1999), 109-122. Zbl0928.35056MR1680674
- ZHU, M., Sobolev inequalities with interior norms, Calc. Var., 8 (1999), 27-43. Zbl0918.35029MR1666870
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.