Fields of CR meromorphic functions

C. Denson Hill; Mauro Nacinovich

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 111, page 179-204
  • ISSN: 0041-8994

How to cite

top

Hill, C. Denson, and Nacinovich, Mauro. "Fields of CR meromorphic functions." Rendiconti del Seminario Matematico della Università di Padova 111 (2004): 179-204. <http://eudml.org/doc/108626>.

@article{Hill2004,
author = {Hill, C. Denson, Nacinovich, Mauro},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {179-204},
publisher = {Seminario Matematico of the University of Padua},
title = {Fields of CR meromorphic functions},
url = {http://eudml.org/doc/108626},
volume = {111},
year = {2004},
}

TY - JOUR
AU - Hill, C. Denson
AU - Nacinovich, Mauro
TI - Fields of CR meromorphic functions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 111
SP - 179
EP - 204
LA - eng
UR - http://eudml.org/doc/108626
ER -

References

top
  1. [A] A. ANDREOTTI, Théorèmes de dependence algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France, 91 (1963), pp. 1-38. Zbl0113.06403MR152674
  2. [AG] A. ANDREOTTI - H. GRAUERT, Algbebraische Körper von automorphen Funktionen, Nachr. Ak. Wiss. Göttingen (1961), pp. 39-48. Zbl0096.28001MR132211
  3. [BHN] J. BRINKSCHULTE - C. D. HILL - M. NACINOVICH, Remarks on weakly pseudoconvex boundaries, Preprint (2001), pp. 1-9; Indagationes Mathematicae (to appear). Zbl1049.32027MR2015593
  4. [BP] A. BOGGESS - J. POLKING, Holomorphic extensions of CR functions, Duke Math. J., 49 (1982), pp. 757-784. Zbl0506.32003MR683002
  5. [C] W. L. CHOW, On complex compact analytic varieties, Amer. J. Math, 71 (1949), pp. 893-914. Zbl0041.48302MR33093
  6. [DCN] L. DE CARLI - M. NACINOVICH, Unique continuation in abstract CR manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1999), pp. 27-46. Zbl0939.32035
  7. [HN1] C. D. HILL - M. NACINOVICH, A necessary condition for global Stein immersion of compact CR manifolds, Riv. Mat. Univ. Parma, 5 (1992), pp. 175-182. Zbl0787.32020MR1230608
  8. [HN2] C. D. HILL - M. NACINOVICH, The topology of Stein CR manifolds and the Lefschetz theorem, Ann. Inst. Fourier, Grenoble, 43 (1993), pp. 459-468. Zbl0782.32015MR1220278
  9. [HN3] C. D. HILL - M. NACINOVICH, Pseudoconcave CR manifolds, Complex Analysis and Geometry (eds Ancona, Ballico, Silva), Marcel Dekker, Inc, New York, 1996, pp. 275-297. Zbl0921.32004MR1365978
  10. [HN4] C. D. HILL - M. NACINOVICH, Aneurysms of pseudoconcave CR manifolds, Math. Z., 220 (199), pp. 347-367. Zbl0843.32011MR1362250
  11. [HN5] C. D. HILL - M. NACINOVICH, Duality and distribution cohomology of CR manifolds, Ann. Scuola Norm. Sup. Pisa, 22 (1995), pp. 315-339. Zbl0848.32003MR1354910
  12. [HN6] C. D. HILL - M. NACINOVICH, On the Cauchy problem in complex analysis, Annali di matematica pura e applicata, CLXXI (IV) (1996), pp. 159-179. Zbl0873.32015MR1441869
  13. [HN7] C. D. HILL - M. NACINOVICH, Conormal suspensions of differential complexes, J. Geom. Anal., 10 (2000), pp. 481-523. Zbl0989.58007MR1794574
  14. [HN8] C. D. HILL - M. NACINOVICH, A weak pseudoconcavity condition for abstract almost CR manifolds, Invent. math., 142 (2000), pp. 251-283. Zbl0973.32018MR1794063
  15. [HN9] C. D. HILL - M. NACINOVICH, Weak pseudoconcavity and the maximum modulus principle, Quaderni sez. Geometria Dip. Matematica Pisa (2001), pp. 1-10 (to appear in Ann. Mat. Pura e Appl.). Zbl1098.35045MR1970466
  16. [HN10] C. D. HILL - M. NACINOVICH, Pseudoconcavity at infinity, Quaderni sez. Geometria Dip. Matematica Pisa, 1.229.1228 (2000), pp. 1-27. 
  17. [HN11] C. D. HILL - M. NACINOVICH, Two lemmas on double complexes and their applications to CR cohomology, Quaderni sez. Geometria Dip. Matematica Pisa, 1.262.1331 (2001), pp. 1-10. Zbl1054.32023MR2049143
  18. [L] E. E. LEVI, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse, Ann. Mat. Pura Appl., XVII (s.III) (1909); Opere, Cremonese, Roma, 1958, pp. 187-213. JFM41.0487.01
  19. [NV] M. NACINOVICH - G. VALLI, Tangential Cauchy-Riemann complexes on distributions, Ann. Mat. Pura Appl., 146 (1987), pp. 123-160. Zbl0631.58024MR916690
  20. [Se] J. P. SERRE, Fonctions automorphes, quelques majorations dans le cas où X/G est compact., Séminaire H. Cartan 1953-54 Benjamin, New York, 1957. 
  21. [Si] C. L. SIEGEL, Meromorphe Funktionen auf kompakten analytischen Manningfaltigkeiten, Nachr. Ak. Wiss Göttingen (1955), pp. 71-77. Zbl0064.08201MR74061

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.