Application of an integral formula to CR-submanifolds of complex hyperbolic space.
Let be a relatively closed subset of a Stein manifold. We prove that the -cohomology groups of Whitney forms on and of currents supported on are either zero or infinite dimensional. This yields obstructions of the existence of a generic embedding of a CR manifold into any open subset of any Stein manifold, namely by the nonvanishing but finite dimensionality of some intermediate -cohomology groups.
In this paper we introduce paraquaternionic CR-submanifolds of almost paraquaternionic hermitian manifolds and state some basic results on their differential geometry. We also study a class of semi-Riemannian submersions from paraquaternionic CR-submanifolds of paraquaternionic Kähler manifolds.
Let and be two compact strongly pseudoconvex CR manifolds of dimension which bound complex varieties and with only isolated normal singularities in and respectively. Let and be the singular sets of and respectively and is nonempty. If and the cardinality of is less than 2 times the cardinality of , then we prove that any non-constant CR morphism from to is necessarily a CR biholomorphism. On the other hand, let be a compact strongly pseudoconvex CR manifold of...
In questo lavoro si dà un criterio sufficiente per l'immersione di una varietà CR astratta di codimensione arbitraria in una di codimensione CR più bassa. La condizione trovata è necessaria per l'immersione in una varietà complessa (codimensione CR uguale a zero). Essa è formulata in termini dell'esistenza di una sottoalgebra di Lie di campi di vettori complessi trasversale alla distribuzione di Cauchy-Riemann.
On étudie les remplissages d’une variété CR de dimension trois par une surface complexe, sous une hypothèse d’équivariance : on suppose que beaucoup d’automorphismes CR du bord se prolongent en des biholomorphismes de tout le remplissage. On démontre dans le cas strictement pseudoconvexe un résultat d’unicité (à éclatement près).