On calibrations for Lawson’s cones

Andrea Davini

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 111, page 55-70
  • ISSN: 0041-8994

How to cite

top

Davini, Andrea. "On calibrations for Lawson’s cones." Rendiconti del Seminario Matematico della Università di Padova 111 (2004): 55-70. <http://eudml.org/doc/108633>.

@article{Davini2004,
author = {Davini, Andrea},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {55-70},
publisher = {Seminario Matematico of the University of Padua},
title = {On calibrations for Lawson’s cones},
url = {http://eudml.org/doc/108633},
volume = {111},
year = {2004},
}

TY - JOUR
AU - Davini, Andrea
TI - On calibrations for Lawson’s cones
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 111
SP - 55
EP - 70
LA - eng
UR - http://eudml.org/doc/108633
ER -

References

top
  1. [1] G. ALBERTI - L. AMBROSIO - X. CABRÉ, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65, No. 1-3 (2001), pp. 9-33. Zbl1121.35312MR1843784
  2. [2] G. ALBERTI - G. DAL MASO - G. BOUCHITTÉ, The calibration method for the Munford-Shah functional, Calc. Var. Partial Differential Equations, 16, No. 3 (2003), pp. 299-333. Zbl1015.49008MR2001706
  3. [3] D. BENARROS - M. MIRANDA, Lawson cones and the Bernstein theorem, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), pp. 44-56. Zbl0860.53003MR1356726
  4. [4] E. BOMBIERI - E. DE GIORGI - E. GIUSTI, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), pp. 243-268. Zbl0183.25901MR250205
  5. [5] P. CONCUS - M. MIRANDA, MACSYMA and minimal surfaces, Proc. of Symposia in Pure Mathematics, by the Amer. Math. Soc., 44(1986), pp. 163-169. MR840272
  6. [6] L. C. EVANS - R. F. GARIEPY, Measure Theory and Fine Properties of Functions, CRC Press, New York, 1992. Zbl0804.28001MR1158660
  7. [7] G. LAWLOR - F. MORGAN, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pac. J. Math., 166, No. 1 (1994), pp. 55-83. Zbl0830.49028MR1306034
  8. [8] H. B. LAWSON JR., The equivariant Plateau problem and interior regularity, Trans. Amer. Math. Soc., 173 (1972), pp. 231-249. Zbl0279.49043MR308905
  9. [9] U. MASSARI - M. MIRANDA, A remark on minimal cones, in Boll. Un. Mat. Ital. (6), 2-A (1983), pp. 123-125. Zbl0518.49030MR694754
  10. [10] M. MIRANDA, Grafici minimi completi, Ann. Univ. Ferrara, 23 (1977), pp. 269-272. Zbl0367.53001MR467551
  11. [11] F. MORGAN, Calibrations and new singularities in area-minimizing surfaces: A survey, Variational methods, Proc. Conf. (Paris/Fr. 1988), Prog. Nonlinear Differ. Equ. Appl., 4 (1990), pp. 329-342. Zbl0721.53058MR1205164
  12. [12] P. SIMOES, A class of minimal cones in Rn , nF8, that minimize area, Ph. D. Thesis, University of California, (Berkeley, CA, 1973). 
  13. [13] J. SIMONS, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), pp. 62-105. Zbl0181.49702MR233295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.