Minimal Cones and the Bernstein Problem.
E. BOMBIERI; E. DE GIORGI; E. GIUSTI
Inventiones mathematicae (1969)
- Volume: 7, page 243-268
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topBOMBIERI, E., GIORGI, E. DE, and GIUSTI, E.. "Minimal Cones and the Bernstein Problem.." Inventiones mathematicae 7 (1969): 243-268. <http://eudml.org/doc/141966>.
@article{BOMBIERI1969,
author = {BOMBIERI, E., GIORGI, E. DE, GIUSTI, E.},
journal = {Inventiones mathematicae},
keywords = {differential geometry},
pages = {243-268},
title = {Minimal Cones and the Bernstein Problem.},
url = {http://eudml.org/doc/141966},
volume = {7},
year = {1969},
}
TY - JOUR
AU - BOMBIERI, E.
AU - GIORGI, E. DE
AU - GIUSTI, E.
TI - Minimal Cones and the Bernstein Problem.
JO - Inventiones mathematicae
PY - 1969
VL - 7
SP - 243
EP - 268
KW - differential geometry
UR - http://eudml.org/doc/141966
ER -
Citations in EuDML Documents
top- Andrea Davini, On calibrations for Lawson’s cones
- Alain Bernard, Eddy A. Campbell, A. M. Davie, Brownian motion and generalized analytic and inner functions
- Guido De Philippis, Emanuele Paolini, A short proof of the minimality of Simons cone
- Ulrich Dierkes, On the non-existence of energy stable minimal cones
- Harold R. Parks, William P. Ziemer, Jacobi fields and regularity of functions of least gradient
- Mario Miranda, Caccioppoli sets
- Umberto Massari, Frontiere orientate di curvatura media assegnata in
- William P. Ziemer, Kevin Zumbrun, The obstacle problem for functions of least gradient
- J. J. L. Velázquez, Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow
- Umberto Massari, Mario Miranda, Michele Jr. Miranda, The Bernstein Theorem in Higher Dimensions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.