Differential and geometric structure for the tangent bundle of a projective limit manifold

George N. Galanis

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 112, page 103-115
  • ISSN: 0041-8994

How to cite

top

Galanis, George N.. "Differential and geometric structure for the tangent bundle of a projective limit manifold." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 103-115. <http://eudml.org/doc/108636>.

@article{Galanis2004,
author = {Galanis, George N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {103-115},
publisher = {Seminario Matematico of the University of Padua},
title = {Differential and geometric structure for the tangent bundle of a projective limit manifold},
url = {http://eudml.org/doc/108636},
volume = {112},
year = {2004},
}

TY - JOUR
AU - Galanis, George N.
TI - Differential and geometric structure for the tangent bundle of a projective limit manifold
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 103
EP - 115
LA - eng
UR - http://eudml.org/doc/108636
ER -

References

top
  1. [1] G. GALANIS, On a type of linear differential equations in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa, 4, No. 24 (1997), pp. 501-510. Zbl0902.34052MR1612393
  2. [2] G. GALANIS - E. VASSILIOU, A Floquet-Liapunov theorem in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa (4), 27 (1998), pp. 427-436. Zbl0932.34061MR1678010
  3. [3] G. GALANIS, Projective limits of Banach-Lie groups, Periodica Mathematica Hungarica, 32 (1996), pp. 179-191. Zbl0866.58009MR1407918
  4. [4] R. S. HAMILTON, The inverse functions theorem of Nash and Moser, Bull. of Amer. Math. Soc., 7 (1982), pp. 65-222. Zbl0499.58003MR656198
  5. [5] J. A. LESLIE, On a differential structure for the group of diffeomorphisms, Topology, 46 (1967), pp. 263-271. Zbl0147.23601MR210147
  6. [6] M. C. ABBATI - A. MANIÀ, On differential structure for projective limits of manifolds, J. Geom. Phys., 29, no. 1-2 (1999), pp. 35-63. Zbl0935.58008MR1668101
  7. [7] A. KRIEGL - P. MICHOR, The convenient setting of global analysis, Mathematical Surveys and Monographs, 53 American Mathematical Society. Zbl0889.58001MR1471480
  8. [8] H. OMORI, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Mathematics, 427 (1974), Springer-Verlag. Zbl0328.58005MR431262
  9. [9] H. H. SCHAEFFER, Topological Vector Spaces, Springer, Berlin, 1980. Zbl0435.46003MR585865
  10. [10] M. E. VERONA, Maps and forms on generalised manifolds, St. Cerc. Mat., 26 (1974), pp. 133-143 (in romanian). Zbl0285.57008MR365610
  11. [11] M. E. VERONA, A de Rham Theorem for generalised manifolds, Proc. Edinburg Math. Soc., 22 (1979), pp. 127-135. Zbl0413.58005MR549458
  12. [12] J. VILMS, Connections on tangent bundles, J. Diff. Geom., 41 (1967), pp. 235-243. Zbl0162.53603MR229168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.