Differential and geometric structure for the tangent bundle of a projective limit manifold
Rendiconti del Seminario Matematico della Università di Padova (2004)
- Volume: 112, page 103-115
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGalanis, George N.. "Differential and geometric structure for the tangent bundle of a projective limit manifold." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 103-115. <http://eudml.org/doc/108636>.
@article{Galanis2004,
author = {Galanis, George N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {103-115},
publisher = {Seminario Matematico of the University of Padua},
title = {Differential and geometric structure for the tangent bundle of a projective limit manifold},
url = {http://eudml.org/doc/108636},
volume = {112},
year = {2004},
}
TY - JOUR
AU - Galanis, George N.
TI - Differential and geometric structure for the tangent bundle of a projective limit manifold
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 103
EP - 115
LA - eng
UR - http://eudml.org/doc/108636
ER -
References
top- [1] G. GALANIS, On a type of linear differential equations in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa, 4, No. 24 (1997), pp. 501-510. Zbl0902.34052MR1612393
- [2] G. GALANIS - E. VASSILIOU, A Floquet-Liapunov theorem in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa (4), 27 (1998), pp. 427-436. Zbl0932.34061MR1678010
- [3] G. GALANIS, Projective limits of Banach-Lie groups, Periodica Mathematica Hungarica, 32 (1996), pp. 179-191. Zbl0866.58009MR1407918
- [4] R. S. HAMILTON, The inverse functions theorem of Nash and Moser, Bull. of Amer. Math. Soc., 7 (1982), pp. 65-222. Zbl0499.58003MR656198
- [5] J. A. LESLIE, On a differential structure for the group of diffeomorphisms, Topology, 46 (1967), pp. 263-271. Zbl0147.23601MR210147
- [6] M. C. ABBATI - A. MANIÀ, On differential structure for projective limits of manifolds, J. Geom. Phys., 29, no. 1-2 (1999), pp. 35-63. Zbl0935.58008MR1668101
- [7] A. KRIEGL - P. MICHOR, The convenient setting of global analysis, Mathematical Surveys and Monographs, 53 American Mathematical Society. Zbl0889.58001MR1471480
- [8] H. OMORI, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Mathematics, 427 (1974), Springer-Verlag. Zbl0328.58005MR431262
- [9] H. H. SCHAEFFER, Topological Vector Spaces, Springer, Berlin, 1980. Zbl0435.46003MR585865
- [10] M. E. VERONA, Maps and forms on generalised manifolds, St. Cerc. Mat., 26 (1974), pp. 133-143 (in romanian). Zbl0285.57008MR365610
- [11] M. E. VERONA, A de Rham Theorem for generalised manifolds, Proc. Edinburg Math. Soc., 22 (1979), pp. 127-135. Zbl0413.58005MR549458
- [12] J. VILMS, Connections on tangent bundles, J. Diff. Geom., 41 (1967), pp. 235-243. Zbl0162.53603MR229168
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.