On a type of linear differential equations in Fréchet spaces

George N. Galanis

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 3, page 501-510
  • ISSN: 0391-173X

How to cite

top

Galanis, George N.. "On a type of linear differential equations in Fréchet spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 501-510. <http://eudml.org/doc/84267>.

@article{Galanis1997,
author = {Galanis, George N.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {solutions; initial conditions},
language = {eng},
number = {3},
pages = {501-510},
publisher = {Scuola normale superiore},
title = {On a type of linear differential equations in Fréchet spaces},
url = {http://eudml.org/doc/84267},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Galanis, George N.
TI - On a type of linear differential equations in Fréchet spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 501
EP - 510
LA - eng
KW - solutions; initial conditions
UR - http://eudml.org/doc/84267
ER -

References

top
  1. [1] H. Cartan, Differential Calculus, Herman, Paris, 1971. MR344032
  2. [2] G. Galanis, Projective limits of Banach-Lie groups, Period. Math. Hungarica32 (1996), 179-191. Zbl0866.58009MR1407918
  3. [3] R.S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7 (1982), 65-221. Zbl0499.58003MR656198
  4. [4] D.H. Hyers, Linear Topological Spaces, Bull. Amer. Math. Soc.51 (1945), 1-24. Zbl0060.26501MR12205
  5. [5] J.A. Leslie, On a differential structure for the group of diffeomorphisms, Topology6 (1967), 263-271. Zbl0147.23601MR210147
  6. [6] J.A. Leslie, Some Frobenious theorems in global analysis, J. Differential Geom.2 (1968), 279-297. Zbl0169.53201MR251750
  7. [7] N. Papaghiuc, Equations differentielles linéaires dans les espaces de Fréchet, Rev. Roumaine Math. Pures Appl. 25 (1980), 83-88. Zbl0441.34042MR577195
  8. [8] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, 1980. Zbl0435.46003MR342978

NotesEmbed ?

top

You must be logged in to post comments.