Complements of the socle in almost simple groups
A. Lucchini; F. Menegazzo; M. Morigi
Rendiconti del Seminario Matematico della Università di Padova (2004)
- Volume: 112, page 141-163
- ISSN: 0041-8994
Access Full Article
topHow to cite
topLucchini, A., Menegazzo, F., and Morigi, M.. "Complements of the socle in almost simple groups." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 141-163. <http://eudml.org/doc/108640>.
@article{Lucchini2004,
author = {Lucchini, A., Menegazzo, F., Morigi, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite groups; minimal normal subgroups; conjugacy classes of complements; numbers of conjugacy classes; almost simple groups},
language = {eng},
pages = {141-163},
publisher = {Seminario Matematico of the University of Padua},
title = {Complements of the socle in almost simple groups},
url = {http://eudml.org/doc/108640},
volume = {112},
year = {2004},
}
TY - JOUR
AU - Lucchini, A.
AU - Menegazzo, F.
AU - Morigi, M.
TI - Complements of the socle in almost simple groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 141
EP - 163
LA - eng
KW - finite groups; minimal normal subgroups; conjugacy classes of complements; numbers of conjugacy classes; almost simple groups
UR - http://eudml.org/doc/108640
ER -
References
top- [1] M. ASCHBACHER - R. GURALNICK, Some applications of the first cohomology group, J. Algebra, 90 (1984), pp. 446-460. Zbl0554.20017MR760022
- [2] R. W. CARTER, Finite groups of Lie type. Conjugacy classes and complex characters. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. Zbl0567.20023MR794307
- [3] J. DIEUDONNÉ, La géométrie des groupes classiques, Seconde édition, revue et corrigée. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl0111.03102MR158011
- [4] D. GORENSTEIN - R. LYONS - R. SOLOMON, The Classification of the finite simple groups. Number 3. Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998. Zbl0816.20016MR1490581
- [5] N. JACOBSON, The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I. American Mathematical Society, New York, 1943. Zbl0060.07302MR8601
- [6] F. GROSS - L. G. KOVÁCS, On normal subgroups which are direct products, J. Algebra, 90 (1984), pp. 133-168. Zbl0594.20018MR757086
- [7] P. KLEIDMAN - M. LIEBECK, The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990. Zbl0697.20004MR1057341
- [8] A. LUCCHINI - F. MENEGAZZO, Generators for finite groups with a unique minimal normal subgroup, Rend. Sem. Mat. Univ. Padova, 98 (1997), pp. 173-191. Zbl0895.20027MR1492976
- [9] A. LUCCHINI - F. MORINI, On the probability of generating finite groups with a unique minimal normal subgroup, Pacific J. Math., 203 (2002), pp. 429-440. Zbl1064.20072MR1897908
- [10] G. E. WALL, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Australian Math. Soc., 3 (1965), pp. 1-62. Zbl0122.28102MR150210
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.