Complements of the socle in almost simple groups

A. Lucchini; F. Menegazzo; M. Morigi

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 112, page 141-163
  • ISSN: 0041-8994

How to cite

top

Lucchini, A., Menegazzo, F., and Morigi, M.. "Complements of the socle in almost simple groups." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 141-163. <http://eudml.org/doc/108640>.

@article{Lucchini2004,
author = {Lucchini, A., Menegazzo, F., Morigi, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite groups; minimal normal subgroups; conjugacy classes of complements; numbers of conjugacy classes; almost simple groups},
language = {eng},
pages = {141-163},
publisher = {Seminario Matematico of the University of Padua},
title = {Complements of the socle in almost simple groups},
url = {http://eudml.org/doc/108640},
volume = {112},
year = {2004},
}

TY - JOUR
AU - Lucchini, A.
AU - Menegazzo, F.
AU - Morigi, M.
TI - Complements of the socle in almost simple groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 141
EP - 163
LA - eng
KW - finite groups; minimal normal subgroups; conjugacy classes of complements; numbers of conjugacy classes; almost simple groups
UR - http://eudml.org/doc/108640
ER -

References

top
  1. [1] M. ASCHBACHER - R. GURALNICK, Some applications of the first cohomology group, J. Algebra, 90 (1984), pp. 446-460. Zbl0554.20017MR760022
  2. [2] R. W. CARTER, Finite groups of Lie type. Conjugacy classes and complex characters. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. Zbl0567.20023MR794307
  3. [3] J. DIEUDONNÉ, La géométrie des groupes classiques, Seconde édition, revue et corrigée. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl0111.03102MR158011
  4. [4] D. GORENSTEIN - R. LYONS - R. SOLOMON, The Classification of the finite simple groups. Number 3. Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998. Zbl0816.20016MR1490581
  5. [5] N. JACOBSON, The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I. American Mathematical Society, New York, 1943. Zbl0060.07302MR8601
  6. [6] F. GROSS - L. G. KOVÁCS, On normal subgroups which are direct products, J. Algebra, 90 (1984), pp. 133-168. Zbl0594.20018MR757086
  7. [7] P. KLEIDMAN - M. LIEBECK, The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990. Zbl0697.20004MR1057341
  8. [8] A. LUCCHINI - F. MENEGAZZO, Generators for finite groups with a unique minimal normal subgroup, Rend. Sem. Mat. Univ. Padova, 98 (1997), pp. 173-191. Zbl0895.20027MR1492976
  9. [9] A. LUCCHINI - F. MORINI, On the probability of generating finite groups with a unique minimal normal subgroup, Pacific J. Math., 203 (2002), pp. 429-440. Zbl1064.20072MR1897908
  10. [10] G. E. WALL, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Australian Math. Soc., 3 (1965), pp. 1-62. Zbl0122.28102MR150210

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.