-elements in groups and Dietzmann classes.
Page 1 Next
Maier, Rudolf, Rogério, José Robério (1999)
Beiträge zur Algebra und Geometrie
Cliff David, James Wiegold (2006)
Rendiconti del Seminario Matematico della Università di Padova
Meintrup, David, Schick, Thomas (2002)
The New York Journal of Mathematics [electronic only]
Mariagrazia Bianchi, Anna Gillio, Carlo Casolo (2001)
Rendiconti del Seminario Matematico della Università di Padova
Fedor Bogomolov, Jorge Maciel (2009)
Open Mathematics
In this article we prove an effective version of the classical Brauer’s Theorem for integer class functions on finite groups.
Mamontov, A.S. (2004)
Sibirskij Matematicheskij Zhurnal
Alexander Fel'shtyn (2009)
Banach Center Publications
It is proved for Abelian groups that the Reidemeister coincidence number of two endomorphisms ϕ and ψ is equal to the number of coincidence points of ϕ̂ and ψ̂ on the unitary dual, if the Reidemeister number is finite. An affirmative answer to the bitwisted Dehn conjugacy problem for almost polycyclic groups is obtained. Finally, we explain why the Reidemeister numbers are always infinite for injective endomorphisms of Baumslag-Solitar groups.
A. Lucchini, F. Menegazzo, M. Morigi (2004)
Rendiconti del Seminario Matematico della Università di Padova
Busch, Cornelia Minette (2006)
The New York Journal of Mathematics [electronic only]
Eriksson, Henrik, Eriksson, Kimmo (2009)
The Electronic Journal of Combinatorics [electronic only]
Roney-Dougal, Colva M. (2004)
Experimental Mathematics
Erfanian, Ahmad, Russo, Francesco (2009)
Acta Universitatis Apulensis. Mathematics - Informatics
Zyubin, S. A., Levchuk, V. M. (2003)
Sibirskij Matematicheskij Zhurnal
Bruno Deschamps (2005)
Acta Arithmetica
Avinoam Mann (1990)
Rendiconti del Seminario Matematico della Università di Padova
Changguo Shao, Qinhui Jiang (2014)
Czechoslovak Mathematical Journal
Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups whose set of numbers of subgroups of possible orders has exactly two elements. We show that if is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then has a normal Sylow subgroup of prime order and is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with...
Antonio Vera López, Josu Sangróniz (1988)
Extracta Mathematicae
Huaguo Shi, Zhangjia Han (2012)
Colloquium Mathematicae
We describe finite groups which contain just one conjugate class of self-normalizing subgroups.
A. Ivanov (1999)
Colloquium Mathematicae
We study infinite finitely generated groups having a finite set of conjugacy classes meeting all cyclic subgroups. The results concern growth and the ascending chain condition for such groups.
Michał Misiurewicz, Ana Rodrigues (2012)
Fundamenta Mathematicae
Making use of the Nielsen fixed point theory, we study a conjugacy invariant of braids, which we call the level index function. We present a simple algorithm for computing it for positive permutation cyclic braids.
Page 1 Next