On a generalization of groups with all subgroups subnormal

A. Arikan; T. Özen

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 112, page 71-76
  • ISSN: 0041-8994

How to cite

top

Arikan, A., and Özen, T.. "On a generalization of groups with all subgroups subnormal." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 71-76. <http://eudml.org/doc/108648>.

@article{Arikan2004,
author = {Arikan, A., Özen, T.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {normal closures; derived subgroups; Fitting -groups; subnormal subgroups},
language = {eng},
pages = {71-76},
publisher = {Seminario Matematico of the University of Padua},
title = {On a generalization of groups with all subgroups subnormal},
url = {http://eudml.org/doc/108648},
volume = {112},
year = {2004},
}

TY - JOUR
AU - Arikan, A.
AU - Özen, T.
TI - On a generalization of groups with all subgroups subnormal
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 71
EP - 76
LA - eng
KW - normal closures; derived subgroups; Fitting -groups; subnormal subgroups
UR - http://eudml.org/doc/108648
ER -

References

top
  1. [1] A. O. ASAR, Locally nilpotent p-groups whose proper subgroups are hypercentral or nilpotent-by-Chernikov, J. London Math. Soc., 2, 61 (2001), pp. 412-422. Zbl0961.20031MR1756802
  2. [2] W. MÖHRES, Gruppen deren Untergruppen alle subnormal sind, Würzburg Ph.D. thesis Aus Karlstadt (1988). Zbl0669.20019
  3. [3] W. MÖHRES, Torsionsgruppen, deren Untergruppen alle subnormal sind, Geometriae Dedicata, 31 (1989), pp. 237-244. Zbl0675.20022MR1012442
  4. [4] W. MÖHRES, Auflösbarkeit von Gruppen deren untergruppen alle subnormal sind, Arch. Math., 54 (1990), pp. 232-235. Zbl0663.20027MR1037610
  5. [5] D. J. S. ROBINSON, Finiteness Conditions and Generalized Soluble Groups, Vols. 1 and 2, (Springer-Verlag 1972). Zbl0243.20033
  6. [6] D. J. S. ROBINSON, A course in the theory of groups, (Springer-Verlag, Heidelberg-Berlin-Newyork 1982). Zbl0483.20001MR648604
  7. [7] M. J. TOMKINSON, A Frattini-like subgroup, Math. Proc. Camb. Phil. Soc., 77 (1975), pp. 247-257. Zbl0301.20018MR382449
  8. [8] M. WEINSTEIN, Examples of groups (Polygonal Publishing USA 1977). Zbl0359.20001MR453847

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.