On a generalization of groups with all subgroups subnormal
Rendiconti del Seminario Matematico della Università di Padova (2004)
- Volume: 112, page 71-76
- ISSN: 0041-8994
Access Full Article
topHow to cite
topArikan, A., and Özen, T.. "On a generalization of groups with all subgroups subnormal." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 71-76. <http://eudml.org/doc/108648>.
@article{Arikan2004,
author = {Arikan, A., Özen, T.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {normal closures; derived subgroups; Fitting -groups; subnormal subgroups},
language = {eng},
pages = {71-76},
publisher = {Seminario Matematico of the University of Padua},
title = {On a generalization of groups with all subgroups subnormal},
url = {http://eudml.org/doc/108648},
volume = {112},
year = {2004},
}
TY - JOUR
AU - Arikan, A.
AU - Özen, T.
TI - On a generalization of groups with all subgroups subnormal
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 71
EP - 76
LA - eng
KW - normal closures; derived subgroups; Fitting -groups; subnormal subgroups
UR - http://eudml.org/doc/108648
ER -
References
top- [1] A. O. ASAR, Locally nilpotent p-groups whose proper subgroups are hypercentral or nilpotent-by-Chernikov, J. London Math. Soc., 2, 61 (2001), pp. 412-422. Zbl0961.20031MR1756802
- [2] W. MÖHRES, Gruppen deren Untergruppen alle subnormal sind, Würzburg Ph.D. thesis Aus Karlstadt (1988). Zbl0669.20019
- [3] W. MÖHRES, Torsionsgruppen, deren Untergruppen alle subnormal sind, Geometriae Dedicata, 31 (1989), pp. 237-244. Zbl0675.20022MR1012442
- [4] W. MÖHRES, Auflösbarkeit von Gruppen deren untergruppen alle subnormal sind, Arch. Math., 54 (1990), pp. 232-235. Zbl0663.20027MR1037610
- [5] D. J. S. ROBINSON, Finiteness Conditions and Generalized Soluble Groups, Vols. 1 and 2, (Springer-Verlag 1972). Zbl0243.20033
- [6] D. J. S. ROBINSON, A course in the theory of groups, (Springer-Verlag, Heidelberg-Berlin-Newyork 1982). Zbl0483.20001MR648604
- [7] M. J. TOMKINSON, A Frattini-like subgroup, Math. Proc. Camb. Phil. Soc., 77 (1975), pp. 247-257. Zbl0301.20018MR382449
- [8] M. WEINSTEIN, Examples of groups (Polygonal Publishing USA 1977). Zbl0359.20001MR453847
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.