Problems from the workshop on Automorphisms of Curves (Leiden, August, 2004)

Gunther Cornelissen; Frans Oort

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 113, page 129-177
  • ISSN: 0041-8994

Abstract

top
In the week of August, 16th-20th of 2004, we organized a workshop about “Automorphisms of Curves” at the Lorentz Center in Leiden. The programme included two “problem sessions”. Some of the problems presented at the workshop were written down; this is our edition of these refereed and revised papers. Edited by Gunther Cornelissen and Frans Oort with contributions of I. Bouw; T. Chinburg; G. Cornelissen; C. Gasbarri; D. Glass; C. Lehr; M. Matignon; F. Oort; R. Pries; S. Wewers.

How to cite

top

Cornelissen, Gunther, and Oort, Frans. "Problems from the workshop on Automorphisms of Curves (Leiden, August, 2004)." Rendiconti del Seminario Matematico della Università di Padova 113 (2005): 129-177. <http://eudml.org/doc/108653>.

@article{Cornelissen2005,
abstract = {In the week of August, 16th-20th of 2004, we organized a workshop about “Automorphisms of Curves” at the Lorentz Center in Leiden. The programme included two “problem sessions”. Some of the problems presented at the workshop were written down; this is our edition of these refereed and revised papers. Edited by Gunther Cornelissen and Frans Oort with contributions of I. Bouw; T. Chinburg; G. Cornelissen; C. Gasbarri; D. Glass; C. Lehr; M. Matignon; F. Oort; R. Pries; S. Wewers.},
author = {Cornelissen, Gunther, Oort, Frans},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {129-177},
publisher = {Seminario Matematico of the University of Padua},
title = {Problems from the workshop on Automorphisms of Curves (Leiden, August, 2004)},
url = {http://eudml.org/doc/108653},
volume = {113},
year = {2005},
}

TY - JOUR
AU - Cornelissen, Gunther
AU - Oort, Frans
TI - Problems from the workshop on Automorphisms of Curves (Leiden, August, 2004)
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 113
SP - 129
EP - 177
AB - In the week of August, 16th-20th of 2004, we organized a workshop about “Automorphisms of Curves” at the Lorentz Center in Leiden. The programme included two “problem sessions”. Some of the problems presented at the workshop were written down; this is our edition of these refereed and revised papers. Edited by Gunther Cornelissen and Frans Oort with contributions of I. Bouw; T. Chinburg; G. Cornelissen; C. Gasbarri; D. Glass; C. Lehr; M. Matignon; F. Oort; R. Pries; S. Wewers.
LA - eng
UR - http://eudml.org/doc/108653
ER -

References

top
  1. [1] E. ARBARELLO - M. CORNALBA - P. GRIFFITH - J. HARRIS, Geometry of Algebraic Curves, Number 267 in Grundlehren. Springer, 1985. Zbl0559.14017MR770932
  2. [2] I. I. BOUW - S. WEWERS, Alternating groups as monodromy groups in positive characteristic, Math. AG/0402436, to appear in Pacific J. Math. Zbl1111.14021MR2200250
  3. [3] M. D. FRIED - E. KLASSEN - Y. KOPELIOVICH, Realizing alternating groups as monodromy groups of genus one covers, Proc. Amer. Math. Soc., 129 (2000), pp. 111-119. Zbl0978.30026MR1784019
  4. [4] M. D. FRIED - H. VÖLKLEIN, The inverse Galois problem and rational points on moduli spaces, Math. Ann., 290 (1991), pp. 771-800. Zbl0763.12004MR1119950
  5. [5] W. FULTON, Hurwitz schemes and the irreducibility of the moduli of algebraic curves, Ann. of Math. 90 (1969), pp. 542-575. Zbl0194.21901MR260752
  6. [6] J. HARRIS - I. MORRISON, Moduli of curves, Number 187 in GTM. Springer, 1998. Zbl0913.14005MR1631825
  7. [7] K. MAGAARD - H. VÖLKLEIN, The monodromy group of a function on a general curve, Math. AG/0304130, to appear in Israel J. Math, 2003. Zbl1075.14027MR2063042
  8. [8] A. TAMAGAWA, Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental group, Preprint. Zbl1100.14021MR2073193
  9. [9] G. BÖCKLE, DemusÏkin groups with group actions and applications to deformations of Galois representations, Compositio Math., 121 (2000), pp. 109-154. Zbl0952.11009MR1757878
  10. [10] B. DE SMIT - H. W. LENSTRA, Jr., Explicit construction of universal deformation rings, in Modular forms and Fermat's Last Theorem, G. Cornell, J. H. Silverman - G. Stevens (eds.), Springer, New York, Berlin, Heidelberg (1977), pp. 313- 326. Zbl0907.13010MR1638482
  11. [11] J. BERTIN, Obstructions locales au relèvement de revêtements galoisiens de courbes lisses, C. R. Acad. Sci. Paris Sér. I Math. 326, no. 1 (1998), pp. 55-58. Zbl0952.14018MR1649485
  12. [12] J. BERTIN - A. MÉZARD, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math., 141 (2000), pp. 195-238. Zbl0993.14014MR1767273
  13. [13] I. BOUW - S. WEWERS, The local lifting problem for dihedral groups, Math. AG/0409395. Zbl1108.14025
  14. [14] G. CORNELISSEN - F. KATO, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J., 116 (2003), pp. 431-470. Zbl1092.14032MR1958094
  15. [15] G. CORNELISSEN - A. MÉZARD, Relèvements des revêtements de courbes faiblement ramifiés, Math. AG/0412189. Zbl1108.14024
  16. [16] M. MATIGNON, p-groupes abéliens de type (p; Á Á Á ; p) et disques ouverts p-adiques, Manuscripta Math., 99, no. 1 (1999), pp. 93-109. Zbl0953.12004MR1697205
  17. [17] S. NAKAJIMA, p-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc., 303 (1987), pp. 595-607. Zbl0644.14010MR902787
  18. [18] F. OORT - T. SEKIGUCHI - N. SUWA, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4) 22, no. 3 (1989), pp. 345-375. Zbl0714.14024MR1011987
  19. [19] G. PAGOT, Relèvement des actions de (Z=2)2 , preprint (2004). 
  20. [20] D. GIESEKER, Flat vector bundles and the fundamental group in non-zero characteristics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975). Zbl0322.14009MR382271
  21. [21] H. LANGE - U. STUHLER, Vektorbndel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z., 156, no. 1 (1977), pp. 73-83. Zbl0349.14018MR472827
  22. [22] M. V. NORI, On the representations of the fundamental group, Compositio Math., 33, no. 1 (1976), pp. 29-41. Zbl0337.14016MR417179
  23. [23] F. OORT, Subvarieties of Moduli Space. Inventiones Mathematicae, 29 (1974), pp. 95-119. Zbl0259.14011MR424813
  24. [24] C. FABER - G. VAN DER GEER, Complete subvarieties of moduli spaces and the Prym map, to appear in J. Reine Angew. Math. Zbl1075.14023MR2084584
  25. [25] D. GLASS - R. PRIES, Hyperelliptic curves with prescribed p-torsion, accepted by Manuscripta. Zbl1093.14039
  26. [26] E. GOREN, Lectures on Hilbert modular varieties and modular forms, volume 14 of CRM Monograph Series, American Mathematical Society, Providence, RI, 2002. With the assistance of Marc-Hubert Nicole. Zbl0986.11037MR1863355
  27. [27] J.-I. IGUSA, Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. USA, 44 (1958), pp. 312-314. Zbl0081.03601MR98728
  28. [28] E. KANI - M. ROSEN, Idempotent relations and factors of Jacobians, Math. Ann., 284 (2) (1989) pp. 307-327. Zbl0652.14011MR1000113
  29. [29] F. OORT, Hyperelliptic supersingular curves. In Arithmetic algebraic geometry (Texel, 1989), volume 89 of Progr. Math., pages 247-284. Birkhäuser Boston, Boston, MA, 1991. Zbl0820.14018MR1085262
  30. [30] N. YUI, On the Jacobian varieties of hyperelliptic curves over fields of characteristic p &gt; 2, J. Algebra, 52 (2) (1978), pp. 378-410. Zbl0404.14008MR491717
  31. [31] B. GREEN - M. MATIGNON, Order p automorphisms of the open disc of a p-adic field, J. Amer. Math. Soc., 12 (1999), pp. 269-303. Zbl0923.14007MR1630112
  32. [32] Y. HENRIO, Arbres de Hurwitz et automorphismes d'ordre p des disques et des couronnes p-adiques formels, Thèse Université Bordeaux I, 1999. 
  33. [33] B. HUPPERT, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York 1967. Zbl0217.07201MR224703
  34. [34] C. LEHR, Reduction of p-cyclic Covers of the Projective Line, Manuscripta Math., 106 2 (2001) 151-175. Zbl1065.14508MR1865562
  35. [35] C. LEHR - M. MATIGNON, Automorphism groups for p-cyclic covers of the affine line, to appear in Compositio Math. http://www.math.u-bordeaux1.fr/ ~matignon/preprints.html Zbl1083.14028MR2157136
  36. [36] C. LEHR - M. MATIGNON, Curves with a big p-group action, in preparation. 
  37. [37] C. LEHR, M. MATIGNON, Wild monodromy and automorphisms of curves, conference proceedings, Tokyo, (2002) (T. Sekiguchi, N. Suwa, editors), to appear. Available on http://www.math.u-bordeaux1.fr/~matignon/ MR2272976
  38. [38] C. LEHR - M. MATIGNON, Wild monodromy and automorphisms of curves, in preparation. Zbl1116.14020
  39. [39] M. MATIGNON, Vers un algorithme pour la réduction stable des revêtements p-cycliques de la droite projective sur un corps p-adique, Mathematische Annalen, 325, (2003), pp. 323-354. Zbl1051.14031MR1962052
  40. [40] S. NAKAJIMA, p-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc., 303 (1987), pp. 595-607. Zbl0644.14010MR902787
  41. [41] M. RAYNAUD, p-groupes et réduction semi-stable des courbes, The Grothendieck Festschrift, Vol III, Progress in Mathematics, 88 (1990), Birkhäuser, pp. 179-197. Zbl0722.14013MR1106915
  42. [42] M. RAYNAUD, Spécialisation des revêtements en caractéristique p &gt; 0, Ann. Scient. Ec. Norm. Sup., 32 (4) (1999), pp. 87-126. Zbl0999.14004MR1670532
  43. [43] M. SUZUKI, Group theory II, Grundlehren der Mathematischen Wissenschaften 248, Springer-Verlag, New York, 1986. Zbl0586.20001MR815926
  44. [44] J. BERTIN, Obstructions locales au relêvement de revêtements galoisiens de courbes lisses, C. R. Acad. Sci. Paris Sér. I Math., 326, no. 1 (1998), pp. 55-58. Zbl0952.14018MR1649485
  45. [45] I. BOUW, - S. WEWERS, The local lifting problem for dihedral groups, preprint Math. AG/0409395. Zbl1108.14025MR2254623
  46. [46] B. GREEN - M. MATIGNON, Liftings of Galois covers of smooth curves, Compositio Math., 113 (1998), pp. 239-274. Zbl0923.14006MR1645000
  47. [47] B. GREEN - M. MATIGNON, Order p automorphisms of the open disc of a p-adic field, J. Amer. Math. Soc., 12 (1999), pp. 269-303. Zbl0923.14007MR1630112
  48. [48] Y. HENRIO, Arbres de Hurwitz et automorphismes d'ordre p des disques et des couronnes p-adiques formels, Thèse Université Bordeaux I, 1999. 
  49. [49] Q. LIU, Reduction and lifting of finite covers of curves, Proceedings of the 2003 Workshop on Cryptography and Related Mathematics, Chuo University (2003), pp. 161-180, available at http://www.math.u-bordeaux1.fr/~liu/preprints.html 
  50. [50] M. MATIGNON, p-groupes abeliens de type (p; . . . ; p) et disques ouverts p-adiques, Manuscripta Math., 99 (1999), pp. 93-109. Zbl0953.12004MR1697205
  51. [51] M. MATIGNON, Autour d'une conjecture de F. Oort sur le relèvement de revêtements galoisiens de courbes, French version for the Limoges seminar (2003) of my MSRI lecture in the workshop on Constructive Galois Theory (1999), available at http://www.math.u-bordeaux1.fr/~matignon/preprints.html 
  52. [52] M. MATIGNON, Lifting (Z=2Z)2 -actions, (2003) available at http://www.math.u-bordeaux1.fr/~matignon/preprints.html 
  53. [53] G. PAGOT, Fp-espaces vectoriels de formes différentielles logarithmiques en caractéristique &gt; 0 et automorphismes du disque ouvert p-adique, J. Number Theory, 97 no. 1 (2002), pp. 58-94. Zbl1076.14504MR1939137
  54. [54] G. PAGOT, Relèvement en caractéristique zéro d'actions de groupes abéliens de type (p; :::; p), Thèse Université Bordeaux I, 2002. 
  55. [55] G. PAGOT, Relèvement des actions de (Z=2Z)2 , Projet de note aux CRAS (2004). 
  56. [56] T. SEKIGUCHI - N. SUWA, A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree p2 , Tohoku Math. J. (2) 53, no. 2 (2001), pp. 203-240. Zbl1073.14546MR1829979
  57. [57] T. SEKIGUCHI - N. SUWA, A note on extensions of algebraic and formal groups. V, Japan. J. Math. (N.S.) 29 no. 2 (2003), pp. 221-284. Zbl1075.14045MR2035540
  58. [58] T. SEKIGUCHI - N. Suwa, On the unified Kummer-Artin-Schreier-Witt theory, Prépublication Université de Bordeaux (1999). 
  59. [59] K.-Z. LI - F. OORT, Moduli of supersingular abelian varieties, Lecture Notes Math. 1680, Springer - Verlag, 116 (1998), pp. ??? Zbl0920.14021MR1611305
  60. [60] C. FABER - G. VAN DER GEER, Complete subvarieties of moduli spaces and the Prym map, In arXiv: math.AG/0305334 [to appear in J. Reine Angew. Math.] Zbl1075.14023MR2084584
  61. [61] G. VAN DER GEER - M. VAN DER VLUGT, On the existence of supersingular curves of given genus, J. Reine Angew. Math., 458 (1995), pp. 53-61. Zbl0819.11022MR1310953
  62. [62] D. GLASS - R. PRIES, Hyperelliptic curves with prescribed p-torsion, [To appear in Masnuscr. Math.] Zbl1093.14039MR2154252
  63. [63] D. GLASS - R. PRIES, Questions on p-torsion of hyperelliptic curves, [This volume] Zbl1093.14039
  64. [64] N. KATZ, Slope filtrations of F-crystals, Journ. Géom. Alg. Rennes 1978. Vol. I, Astérisque 63, Soc. Math. France 1979; pp. 113-163. Zbl0426.14007MR563463
  65. [65] YU. I. MANIN, The theory of commutative formal groups over fields of finite characteristic, Usp. Math., 18 (1963), pp. 3-90; Russ. Math. Surveys, 18 (1963), pp. 1-80. Zbl0128.15603MR157972
  66. [66] J. S. MILNE, Jacobian varieties, Chapter 7 in: Arithmetic geometry (Ed. G. Cornell - J. H. Silverman. Springer - Verlag, 1986; pp. 167-212. Zbl0604.14018MR861976
  67. [67] P. NORMAN - F. OORT, Moduli of abelian varieties, Ann. Math., 112 (1980), pp. 413-439. Zbl0483.14010MR595202
  68. [68] F. OORT, Hyperelliptic supersingular curves, In: Arithmetic Algebraic Geometry (Texel 1989) (Ed. G. van der Geer, F. Oort, J. Steenbrink). Progress Math. 89, Birkhäuser 1991; pp. 247-284. Zbl0820.14018MR1085262
  69. [69] F. OORT, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math., 152 (2000), pp. 183-206. Zbl0991.14016MR1792294
  70. [70] F. OORT, A stratification of a moduli space of polarized abelian varieties, In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math., 195, Birkhäuser Verlag 2001; pp. 345-416. Zbl1052.14047MR1827027
  71. [71] F. OORT, Newton polygon strata in the moduli space of abelian varieties, In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math., 195, Birkhäuser Verlag 2001; pp. 417-440. Zbl1086.14037MR1827028
  72. [72] F. OORT - K. UENO, Principally polarized abelian varieties of dimension two or three are Jacobian varieties, Journ. Fac. Sc. Univ. Tokyo, Sec. IA, 20 (1973), pp. 377-381. Zbl0272.14008MR364265
  73. [73] R. S. G. RE, Invariants of curves and Jacobians in positive characteristic, PhD-thesis Amsterdam 2004. 
  74. [74] J. SCHOLTEN - H. J. ZHU, Hyperelliptic curves in characteristic 2, Int. Math. Res. Not. 17 (2002), pp. 905-917. Zbl1034.14013MR1899907
  75. [75] J. SCHOLTEN - H. J. ZHU, Families of supersingular curves in characteristic 2, Math. Res. Lett., 9 (2002), pp. 639-650. Zbl1057.14037MR1906067
  76. [76] A. WEIL, Zum Beweis des Torellischen Satzes, Nachr. Akad. Göttingen, Math.-Phys. Kl. (1957), pp. 33-53. See êII [1957a]. Zbl0079.37002MR89483
  77. [77] R. D. M. ACCOLA, On the number of automorphisms of a closed Riemann surface, Transact. AMS 131 (1968), pp. 398-408. Zbl0179.11401MR222281
  78. [78] R. D. M. ACCOLA, Topics in the theory of Riemann surfaces, Lect. Notes Math. 1595, Springer - Verlag, 1994. Zbl0820.30002MR1329541
  79. [79] A. M. MACBEATH, On a theorem of Hurwitz, Proceed. Glasgow Math. Assoc., 5 (1961), pp. 90-96. Zbl0134.16603MR146724
  80. [80] C. MACLACHLAN, A bound for the number of automorphisms of a compact Riemann surface, Journ. London Math. Soc. 44 (1969), pp. 265-272. Zbl0164.37904MR236378

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.