On the deformation of Artin-Schreier to Kummer

T. Sekiguchi; F. Oort; N. Suwa

Annales scientifiques de l'École Normale Supérieure (1989)

  • Volume: 22, Issue: 3, page 345-375
  • ISSN: 0012-9593

How to cite

top

Sekiguchi, T., Oort, F., and Suwa, N.. "On the deformation of Artin-Schreier to Kummer." Annales scientifiques de l'École Normale Supérieure 22.3 (1989): 345-375. <http://eudml.org/doc/82255>.

@article{Sekiguchi1989,
author = {Sekiguchi, T., Oort, F., Suwa, N.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {lifting problem; deformation of to ; characteristic p; automorphism group; Galois covering of curves; class field theory; Artin-Schreier sequence; Kummer sequence},
language = {eng},
number = {3},
pages = {345-375},
publisher = {Elsevier},
title = {On the deformation of Artin-Schreier to Kummer},
url = {http://eudml.org/doc/82255},
volume = {22},
year = {1989},
}

TY - JOUR
AU - Sekiguchi, T.
AU - Oort, F.
AU - Suwa, N.
TI - On the deformation of Artin-Schreier to Kummer
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1989
PB - Elsevier
VL - 22
IS - 3
SP - 345
EP - 375
LA - eng
KW - lifting problem; deformation of to ; characteristic p; automorphism group; Galois covering of curves; class field theory; Artin-Schreier sequence; Kummer sequence
UR - http://eudml.org/doc/82255
ER -

References

top
  1. [1] N. BOURBAKI, Algèbre commutative, Eléments de Math., 27, 28, 30, 31, Hermann, Paris, 1961-1965. 
  2. [2] L. BREEN, Extensions of Abelian Sheaves and Eilenberg-Maclane algebras, Invent. Math., Vol. 9, 1969, pp. 15-44. Zbl0181.26401MR41 #3488
  3. [3] L. BREEN, Un théorème d'annulation pour certains des Exti de faisceaux abéliens, Ann. scient. Éc. Norm. Sup., Vol. 8, 1975, pp. 339-352. Zbl0313.14001MR53 #5595
  4. [4] M. DEMAZURE and P. GABRIEL, Groupes algébriques, Tome 1. Masson, Paris, North-Holland Pub. Comp., Amsterdam, 1970. Zbl0203.23401
  5. FGA A. GROTHENDIECK, Fondements de la géométrie algébrique. Séminaire Bourbaki, 1952-1962, Secrétariat Math., Paris, 1962. Zbl0239.14002
  6. GB A. GROTHENDIECK, Le groupe de Brauer I, II, III. Dix exposés sur la cohomologie des schémas, North-Holland, Masson, 1968. 
  7. EGA A. GROTHENDIECK and J. DIEUDONNÉ, Éléments de géométrie algébrique, Pub. Math. I.H.E.S., 1960-1967. 
  8. SGA A. GROTHENDIECK et al., Séminaire de géométrie algébrique, Lecture Notes in Math., Nos. 224, 269, 270, 305, Berlin-Heidelberg-New York, Springer-Verlag, 1971-1973. 
  9. [5] H. HASSE, Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichen Konstantenkörper. Jour. reine angew. Math. (Crelle), 172, 1935, pp. 37-54. Zbl0010.00501JFM60.0097.01
  10. [6] J.-I. IGUSA, Arithmetic Variety of Moduli for Genus Two, Ann. Math., 72, 1960, pp. 612-649. Zbl0122.39002MR22 #5637
  11. [7] T. KAMBAYASHI and M. MIYANISHI, On Flat Fibrations by the Affine Line, Illinois J. Math., No. 4, 22, 1978, pp. 662-671. Zbl0406.14012MR80f:14028
  12. [8] O. A. LAUDAL and K. LØNSTED, Deformations of Curves I. Moduli for Hyperelliptic Curves. Algebraic Geometry, Proceedings Tromsø, Norway 1977, Lecture Notes in Math., No. 687, Berlin-Heidelberg-New York, Springer-Verlag, 1978, pp. 150-167. Zbl0422.14014
  13. [9] D. MUMFORD, Geometric Invariant Theory. Ergebnisse, Berlin-Heidelberg-New York, Springer-Verlag, 1965. Zbl0147.39304MR35 #5451
  14. [10] D. MUMFORD, Abelian Varieties, Tata Inst. Studies in Math., Oxford University Press, 1970. Zbl0223.14022MR44 #219
  15. [11] M. NAGATA, Local rings, Interscience Tracts in Pure & Applied Math., 131, J. Wiley, New York, 1962. Zbl0123.03402MR27 #5790
  16. [12] S. NAKAJIMA, Action of an Automorphism of Order p on Cohomology Groups of an Algebraic Curves, J. Pure and Applied Alg. 42, 1986, pp. 85-94. Zbl0607.14022MR88d:14018
  17. [13] F. OORT, Commutative Group Schemes, Lecture Notes in Math., No. 15, Berlin-Heidelberg-New York, Springer-Verlag, 1966. Zbl0216.05603MR35 #4229
  18. [14] F. OORT, Finite Group Schemes, Local Moduli for Abelian Varieties and Lifting Problems, Compos. Math., Vol. 23, 1971, pp. 265-296 (Also : Algebraic Geometry, Oslo, 1970, F. Oort ed., Wolters-Noordhoff, 1972, pp. 223-254). Zbl0239.14018MR46 #186
  19. [15] F. OORT, Singularities of coarse moduli schemes, Sém. Dubreil, 29, 1975/1976 ; Lecture Notes in Math., Vol. 586, pp. 61-76, Berlin-Heidelberg-New York, Springer-Verlag, 1977. Zbl0349.14003
  20. [16] F. OORT and D. MUMFORD, Deformations and Liftings of Finite Commutative Group Schemes, Invent. Math., Vol. 5, 1968, pp. 317-334. Zbl0179.49901MR37 #4085
  21. [17] F. OORT and T. SEKIGUCHI, The canonical lifting of an ordinary Jacobian variety need not a Jacobian variety, J. Math. Soc. Japan, Vol. 38, 1986, pp. 427-437. Zbl0605.14031MR87g:14047
  22. [18] M. RAYNAUD, Spécialization du foncteur de Picard, I.H.E.S., Vol. 38, 1970, pp. 27-76. Zbl0207.51602MR44 #227
  23. [19] P. ROQUETTE, Abschötzung der Automorphismenzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z., Vol. 117, 1970, pp. 157-163. Zbl0194.35302MR43 #4826
  24. [20] T. SEKIGUCHI and F. OORT, On the deformations of Witt groups to tori. In Algebraic and Topological Theories (to the memory of Dr. T. Miyarta), Kinokuniya Co., Ltd., 1985, pp. 283-298. Zbl0800.14023
  25. [21] J.-P. SERRE, Groupes algébriques et corps de classes, Hermann, Paris, 1959. Zbl0097.35604MR21 #1973
  26. [22] B. SINGH, On the group of automorphisms of a function field of genus at least two, Jour. of Pure and Applied algebra, Vol. 4, 1974, pp. 205-229. Zbl0284.12007MR50 #13047
  27. [23] H. STICHTENOTH, Uber die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. Teil I : Eine Abschötzung der Ordnung der Automorphismengruppe. Teil II : Ein spezieller typ von Funktionenkörpern, Arch. Math. Vol. 24, 1973, pp. 527-544 ; Vol. 25, 1973, pp. 615-631. Zbl0282.14007MR53 #8068
  28. [24] B. WEISFEILER, On a case of extensions of group schemes, Trans. Math. Soc., No. 1, 248, 1979, pp. 171-189. Zbl0412.14022MR81c:14027
  29. [25] W. WATERHOUSE and B. WEISFEILER, One-dimensional affine group schemes, J. of Alg., Vol. 66, 1980, pp. 550-568. Zbl0452.14013MR82e:14057
  30. [26] W. WATERHOUSE, A unified Kummer-Artin-Schreier sequence, Math. Ann., Vol. 277, 1987, pp. 447-451. Zbl0608.12026MR88j:14058

Citations in EuDML Documents

top
  1. Tsutomu Sekiguchi, Noriyuki Suwa, On the structure of the group scheme [ / p n ] ×
  2. A. Mézard, M. Romagny, D. Tossici, Models of group schemes of roots of unity
  3. Ariane Mézard, Matthieu Romagny, Dajano Tossici, Sekiguchi-Suwa theory revisited
  4. Noriyuki Suwa, Tsutomu Sekiguchi, Théorie de Kummer-Artin-Schreier et applications
  5. Ted Chinburg, Robert Guralnick, David Harbater, The local lifting problem for actions of finite groups on curves
  6. Stefan Wewers, Formal deformation of curves with group scheme action
  7. Rachel Pries, Hui June Zhu, The p -rank stratification of Artin-Schreier curves
  8. Yuji Tsuno, Degeneration of the Kummer sequence in characteristic p &gt; 0
  9. Gunther Cornelissen, Frans Oort, Problems from the workshop on Automorphisms of Curves (Leiden, August, 2004)
  10. Marco A. Garuti, Prolongement de revêtements galoisiens en géométrie rigide

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.