How to show that some rays are maximal transport rays in Monge Problem

Aldo Pratelli

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 113, page 179-201
  • ISSN: 0041-8994

How to cite

top

Pratelli, Aldo. "How to show that some rays are maximal transport rays in Monge Problem." Rendiconti del Seminario Matematico della Università di Padova 113 (2005): 179-201. <http://eudml.org/doc/108655>.

@article{Pratelli2005,
author = {Pratelli, Aldo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {mass transportation; optimal transport map; balanced ray configuration},
language = {eng},
pages = {179-201},
publisher = {Seminario Matematico of the University of Padua},
title = {How to show that some rays are maximal transport rays in Monge Problem},
url = {http://eudml.org/doc/108655},
volume = {113},
year = {2005},
}

TY - JOUR
AU - Pratelli, Aldo
TI - How to show that some rays are maximal transport rays in Monge Problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 113
SP - 179
EP - 201
LA - eng
KW - mass transportation; optimal transport map; balanced ray configuration
UR - http://eudml.org/doc/108655
ER -

References

top
  1. [1] L. AMBROSIO, Lecture Notes on Optimal Transport Problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, LNM 1812, Springer (2003), pp. 1-52. Zbl1047.35001MR2011032
  2. [2] L. AMBROSIO - A. PRATELLI, Existence and stability results in the L1 theory of optimal transportation, in Optimal Transportation and Applications, Lecture Notes in Mathematics, LNM 1813, Springer (2003), pp. 123-160. Zbl1065.49026MR2006307
  3. [3] L. AMBROSIO - N. FUSCO - D. PALLARA, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press (2000). Zbl0957.49001MR1857292
  4. [4] G. BOUCHITTÉ - G. BUTTAZZO, Characterization of optimal shapes and masses through Monge-Kantorovich Equation, J. Eur. Math. Soc., 3 (2001), pp. 139-168. Zbl0982.49025MR1831873
  5. [5] G. BOUCHITTÉ - G. BUTTAZZOP. SEPPECHER, Shape optimization solutions via Monge-Kantorovich equation, C.R. Acad. Sci. Paris, 324-I (1997), pp. 1185-1191. Zbl0884.49023MR1451945
  6. [6] C. CASTAING - M. VALADIER, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, 580, Springer (1977). Zbl0346.46038MR467310
  7. [7] L.C. EVANS - W. GANGBO, Differential equations methods for the MongeKantorovich mass transfer problem, Memoirs of the A.M.S., Vol. 137, Number 653, (1999). Zbl0920.49004MR1464149
  8. [8] I. FRAGALÀ, M.S. GELLI - A. PRATELLI, Continuity of an optimal transport in Monge problem, to appear on JMPA. Zbl1075.49018MR2162225
  9. [9] L.V. KANTOROVICH, On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), pp. 227-229. 
  10. [10] L.V. KANTOROVICH, On a problem of Monge, Uspekhi Mat. Nauk., 3 (1948), pp. 225-226. 
  11. [11] G. MONGE, Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris (1781). 
  12. [12] A. PRATELLI, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy (2003). Avalaible on http://cvgmt.sns.it/ . 
  13. [13] S.T. RACHEV - L. RÜSCHENDORF, Mass Transportation Problems, SpringerVerlag (1998). 

NotesEmbed ?

top

You must be logged in to post comments.