How to show that some rays are maximal transport rays in Monge Problem
Rendiconti del Seminario Matematico della Università di Padova (2005)
- Volume: 113, page 179-201
- ISSN: 0041-8994
Access Full Article
topHow to cite
topPratelli, Aldo. "How to show that some rays are maximal transport rays in Monge Problem." Rendiconti del Seminario Matematico della Università di Padova 113 (2005): 179-201. <http://eudml.org/doc/108655>.
@article{Pratelli2005,
author = {Pratelli, Aldo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {mass transportation; optimal transport map; balanced ray configuration},
language = {eng},
pages = {179-201},
publisher = {Seminario Matematico of the University of Padua},
title = {How to show that some rays are maximal transport rays in Monge Problem},
url = {http://eudml.org/doc/108655},
volume = {113},
year = {2005},
}
TY - JOUR
AU - Pratelli, Aldo
TI - How to show that some rays are maximal transport rays in Monge Problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 113
SP - 179
EP - 201
LA - eng
KW - mass transportation; optimal transport map; balanced ray configuration
UR - http://eudml.org/doc/108655
ER -
References
top- [1] L. AMBROSIO, Lecture Notes on Optimal Transport Problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, LNM 1812, Springer (2003), pp. 1-52. Zbl1047.35001MR2011032
- [2] L. AMBROSIO - A. PRATELLI, Existence and stability results in the L1 theory of optimal transportation, in Optimal Transportation and Applications, Lecture Notes in Mathematics, LNM 1813, Springer (2003), pp. 123-160. Zbl1065.49026MR2006307
- [3] L. AMBROSIO - N. FUSCO - D. PALLARA, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press (2000). Zbl0957.49001MR1857292
- [4] G. BOUCHITTÉ - G. BUTTAZZO, Characterization of optimal shapes and masses through Monge-Kantorovich Equation, J. Eur. Math. Soc., 3 (2001), pp. 139-168. Zbl0982.49025MR1831873
- [5] G. BOUCHITTÉ - G. BUTTAZZOP. SEPPECHER, Shape optimization solutions via Monge-Kantorovich equation, C.R. Acad. Sci. Paris, 324-I (1997), pp. 1185-1191. Zbl0884.49023MR1451945
- [6] C. CASTAING - M. VALADIER, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, 580, Springer (1977). Zbl0346.46038MR467310
- [7] L.C. EVANS - W. GANGBO, Differential equations methods for the MongeKantorovich mass transfer problem, Memoirs of the A.M.S., Vol. 137, Number 653, (1999). Zbl0920.49004MR1464149
- [8] I. FRAGALÀ, M.S. GELLI - A. PRATELLI, Continuity of an optimal transport in Monge problem, to appear on JMPA. Zbl1075.49018MR2162225
- [9] L.V. KANTOROVICH, On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), pp. 227-229.
- [10] L.V. KANTOROVICH, On a problem of Monge, Uspekhi Mat. Nauk., 3 (1948), pp. 225-226.
- [11] G. MONGE, Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris (1781).
- [12] A. PRATELLI, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy (2003). Avalaible on http://cvgmt.sns.it/ .
- [13] S.T. RACHEV - L. RÜSCHENDORF, Mass Transportation Problems, SpringerVerlag (1998).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.