How to show that some rays are maximal transport rays in Monge Problem
Rendiconti del Seminario Matematico della Università di Padova (2005)
- Volume: 113, page 179-201
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] L. AMBROSIO, Lecture Notes on Optimal Transport Problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, LNM 1812, Springer (2003), pp. 1-52. Zbl1047.35001MR2011032
- [2] L. AMBROSIO - A. PRATELLI, Existence and stability results in the L1 theory of optimal transportation, in Optimal Transportation and Applications, Lecture Notes in Mathematics, LNM 1813, Springer (2003), pp. 123-160. Zbl1065.49026MR2006307
- [3] L. AMBROSIO - N. FUSCO - D. PALLARA, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press (2000). Zbl0957.49001MR1857292
- [4] G. BOUCHITTÉ - G. BUTTAZZO, Characterization of optimal shapes and masses through Monge-Kantorovich Equation, J. Eur. Math. Soc., 3 (2001), pp. 139-168. Zbl0982.49025MR1831873
- [5] G. BOUCHITTÉ - G. BUTTAZZOP. SEPPECHER, Shape optimization solutions via Monge-Kantorovich equation, C.R. Acad. Sci. Paris, 324-I (1997), pp. 1185-1191. Zbl0884.49023MR1451945
- [6] C. CASTAING - M. VALADIER, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, 580, Springer (1977). Zbl0346.46038MR467310
- [7] L.C. EVANS - W. GANGBO, Differential equations methods for the MongeKantorovich mass transfer problem, Memoirs of the A.M.S., Vol. 137, Number 653, (1999). Zbl0920.49004MR1464149
- [8] I. FRAGALÀ, M.S. GELLI - A. PRATELLI, Continuity of an optimal transport in Monge problem, to appear on JMPA. Zbl1075.49018MR2162225
- [9] L.V. KANTOROVICH, On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), pp. 227-229.
- [10] L.V. KANTOROVICH, On a problem of Monge, Uspekhi Mat. Nauk., 3 (1948), pp. 225-226.
- [11] G. MONGE, Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris (1781).
- [12] A. PRATELLI, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy (2003). Avalaible on http://cvgmt.sns.it/ .
- [13] S.T. RACHEV - L. RÜSCHENDORF, Mass Transportation Problems, SpringerVerlag (1998).