Zeta functions of totally ramified p-covers of the projective line

Hanfeng Li; Hui June Zhu

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 113, page 203-225
  • ISSN: 0041-8994

How to cite

top

Li, Hanfeng, and Zhu, Hui June. "Zeta functions of totally ramified p-covers of the projective line." Rendiconti del Seminario Matematico della Università di Padova 113 (2005): 203-225. <http://eudml.org/doc/108657>.

@article{Li2005,
author = {Li, Hanfeng, Zhu, Hui June},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {203-225},
publisher = {Seminario Matematico of the University of Padua},
title = {Zeta functions of totally ramified p-covers of the projective line},
url = {http://eudml.org/doc/108657},
volume = {113},
year = {2005},
}

TY - JOUR
AU - Li, Hanfeng
AU - Zhu, Hui June
TI - Zeta functions of totally ramified p-covers of the projective line
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 113
SP - 203
EP - 225
LA - eng
UR - http://eudml.org/doc/108657
ER -

References

top
  1. [1] PIERRE BERTHELOT, Cohomologie rigide et théorie de Dwork: le ca des sommes exponentielles, in Cohomologie p-adique, Société Mathématique de France, Astérisque, 119-120 (1984), pp. 17-49. Zbl0577.14013MR773087
  2. [2] S. BOSCH - U. GUNTZER - R. REMMENT, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften, Vol. 261 (Springer-Verlag, Berlin, 1984). Zbl0539.14017MR746961
  3. [3] RICHARD CREW, Etale p-covers in characteristic p, Compositio Math., 52 (1984), pp. 31-45. Zbl0558.14009MR742696
  4. [4] NICHOLAS M. KATZ, Gauss sums, Kloosterman sums, and monodromy groups, Annals of mathematics studies, 116 (Princeton University Press, 1988). Zbl0675.14004MR955052
  5. [5] PAUL MONSKY, p-adic analysis and zeta functions, Lectures in Mathematics, Department of Mathematics, Kyoto University, Kinokuniya Book-Store Co., Ltd. (Tokyo, 1970). Zbl0256.14009MR282981
  6. [6] PHILIPPE ROBBA, Index of p-adic differential operators III. Application to twisted exponential sums, in Cohomologie p-adique, Société Mathématique de France, Astérisque, 119-120 (1984), pp. 191-266. Zbl0548.12015MR773094
  7. [7] JASPER SCHOLTEN; HUI JUNE ZHU: Hyperelliptic curves in characteristic 2, Math. Research Letters, 17 (2002), pp. 905-917. Zbl1034.14013MR1899907
  8. [8] JEAN-PIERRE SERRE, Endomorphismes complètement continus des espaces de Banach p-adiques, Inst. Hautes Études Sci. Publ. Math., 12 (1962), pp. 69-85. Zbl0104.33601MR144186
  9. [9] DAQING WAN, Newton polygons of zeta functions and L-functions, Ann. Math., 137 (1993), pp. 247-293. Zbl0799.11058MR1207208
  10. [10] DAQING WAN, Variation of Newton polygons for L-functions of exponential sums., Asian J. Math., 8 (2004), pp. 427-474. Zbl1084.11067MR2129244
  11. [11] DAQING WAN, Rank one case of Dwork's conjecture., J. of Amer. Math. Soc., 13 (2000), pp. 853-908. Zbl1086.11031MR1775761
  12. [12] DAQING WAN, Higher rank case of Dwork's conjecture., J. of Amer. Math. Soc., 13 (2000), pp. 807-852. Zbl1086.11030MR1775738
  13. [13] HUI JUNE ZHU, p-adic variation of L functions of one variable exponential sums, I., Amer. J. Math., 125 (2003), pp. 669-690. Zbl1033.11056MR1981038
  14. [14] HUI JUNE ZHU, Asymptotic variation of L functions of one-variable exponential sums., J. Reine Angew. Math., 572 (2004), pp. 219-233. Zbl1055.11075MR2076126
  15. [15] HUI JUNE ZHU, L functions of exponential sums over one dimensional affinoids: Newton over Hodge., Inter. Math. Res. Notices., Vol 2004, no. 30 (2004), pp. 1529-1550. Zbl1089.11044MR2049830

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.