Generic -coverings of finite groups of Lie type
D. Bubboloni; M. S. Lucido; Th. Weigel
Rendiconti del Seminario Matematico della Università di Padova (2006)
- Volume: 115, page 209-252
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBubboloni, D., Lucido, M. S., and Weigel, Th.. "Generic $2$-coverings of finite groups of Lie type." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 209-252. <http://eudml.org/doc/108679>.
@article{Bubboloni2006,
author = {Bubboloni, D., Lucido, M. S., Weigel, Th.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {symplectic groups; conjugacy classes of subgroups; finite groups of Lie type; covering properties},
language = {eng},
pages = {209-252},
publisher = {Seminario Matematico of the University of Padua},
title = {Generic $2$-coverings of finite groups of Lie type},
url = {http://eudml.org/doc/108679},
volume = {115},
year = {2006},
}
TY - JOUR
AU - Bubboloni, D.
AU - Lucido, M. S.
AU - Weigel, Th.
TI - Generic $2$-coverings of finite groups of Lie type
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 209
EP - 252
LA - eng
KW - symplectic groups; conjugacy classes of subgroups; finite groups of Lie type; covering properties
UR - http://eudml.org/doc/108679
ER -
References
top- [1] A. BOREL - J. DE SIEBENTHAL, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), pp. 200-221. Zbl0034.30701MR32659
- [2] R. BRANDL, A covering property of finite groups, Bull. Austral. Math. Soc., 23 no. 2 (1981), pp. 227-235. Zbl0462.20022MR617065
- [3] D. BUBBOLONI, Coverings of Symmetric and Alternating Groups, preprint, 1998.
- [4] D. BUBBOLONI - M. S. LUCIDO, Coverings of linear groups, Comm. Algebra, 30, no. 5 (2002), pp. 2143-2159. Zbl1007.20030MR1904630
- [5] D. BUBBOLONI - M. S. LUCIDO - TH. WEIGEL, 2-coverings of Classical groups, in preparation. Zbl1156.20039
- [6] R. W. CARTER, Conjugacy Classes in Weyl Groups, Compositio math., 25 (1972), pp. 1-59. Zbl0254.17005MR318337
- [7] R. W. CARTER, Simple Groups of Lie Type, John Wiley, London, 1989. Zbl0723.20006MR1013112
- [8] R. W. CARTER, Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, John Wiley, Chichester, 1993. Zbl0567.20023MR1266626
- [9] J. H. CONWAY - R. T. CURTIS - S. P. NORTON - R. A. PARKER - R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985. Zbl0568.20001MR827219
- [10] R. H. DYE, Interrelations of Symplectic and Orthogonal Groups in Characteristic Two, J. Algebra, 59 (1979), pp. 202-221. Zbl0409.20033MR541675
- [11] E. B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl., 6 (1957), pp. 111-244. Zbl0077.03404
- [12] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York, 1972. Zbl0254.17004MR323842
- [13] J. E. HUMPHREYS, Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21, Springer-Verlag, New-York, 1987. Zbl0325.20039MR396773
- [14] B. HUPPERT, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 134, Springer-Verlag, Berlin, 1967. Zbl0217.07201MR224703
- [15] W. JEHNE, Kronecker classes of algebraic number fields, J. Number Theory, 9, no. 3 (1977), pp. 279-320. Zbl0392.12003MR447184
- [16] R. I. LAWTHER, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra, 23 (1995), pp. 4125-4156. Zbl0880.20034MR1351124
- [17] C. E. PRAEGER, Kronecker classes of fields and covering subgroups of finite groups, J. Austral. Math. Soc. Ser. A, 57, no. 1 (1994), pp. 17-34. Zbl0818.20020MR1279283
- [18] D. J. S. ROBINSON, A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1982. Zbl0483.20001MR648604
- [19] J. SAXL, On a question of W. Jehne concerning covering subgroups of groups and Kronecker classes of fields, J. London Math. Soc. (2) 38, no. 2 (1988), pp. 243-249. Zbl0663.12010MR966296
- [20] J. SAXL - G. M. SEITZ, Subgroups of algebraic groups containing regular unipotent elements, J. London Math. Soc. (2) 55 (1997), pp. 370-386. Zbl0955.20033MR1438641
- [21] J-P. SERRE, Galois Cohomology, cinquième édition, révisée et complétée, Springer-Verlag, Berlin, 1997. Zbl0902.12004MR1466966
- [22] T. SHOJI, The conjugacy classes of Chevalley groups of type (F4) over finite fields of characteristic p T= 2, J. Fac. Sci. Univ. Tokyo, 21 (1974), pp. 1-17. Zbl0279.20038MR357641
- [23] T. A. SPRINGER, Regular Elements of Finite Reflection Groups, Invent. math., 25 (1974), pp. 159-198. Zbl0287.20043MR354894
- [24] T. A. SPRINGER - R. STEINBERG, Conjugacy Classes, Seminar on Algebraic Groups and Related Topics (Berlin), (A. Borel et al.), Lecture Notes in Mathematics, vol. 131, Springer-Verlag, 1970, pp. 166-266. Zbl0249.20024MR268192
- [25] T. WEIGEL, Generation of Exceptional Groups of Lie-type, Geom. Dedicata, 41 (1992), pp. 63-87. Zbl0758.20001MR1147502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.