Generic 2 -coverings of finite groups of Lie type

D. Bubboloni; M. S. Lucido; Th. Weigel

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 115, page 209-252
  • ISSN: 0041-8994

How to cite

top

Bubboloni, D., Lucido, M. S., and Weigel, Th.. "Generic $2$-coverings of finite groups of Lie type." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 209-252. <http://eudml.org/doc/108679>.

@article{Bubboloni2006,
author = {Bubboloni, D., Lucido, M. S., Weigel, Th.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {symplectic groups; conjugacy classes of subgroups; finite groups of Lie type; covering properties},
language = {eng},
pages = {209-252},
publisher = {Seminario Matematico of the University of Padua},
title = {Generic $2$-coverings of finite groups of Lie type},
url = {http://eudml.org/doc/108679},
volume = {115},
year = {2006},
}

TY - JOUR
AU - Bubboloni, D.
AU - Lucido, M. S.
AU - Weigel, Th.
TI - Generic $2$-coverings of finite groups of Lie type
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 209
EP - 252
LA - eng
KW - symplectic groups; conjugacy classes of subgroups; finite groups of Lie type; covering properties
UR - http://eudml.org/doc/108679
ER -

References

top
  1. [1] A. BOREL - J. DE SIEBENTHAL, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), pp. 200-221. Zbl0034.30701MR32659
  2. [2] R. BRANDL, A covering property of finite groups, Bull. Austral. Math. Soc., 23 no. 2 (1981), pp. 227-235. Zbl0462.20022MR617065
  3. [3] D. BUBBOLONI, Coverings of Symmetric and Alternating Groups, preprint, 1998. 
  4. [4] D. BUBBOLONI - M. S. LUCIDO, Coverings of linear groups, Comm. Algebra, 30, no. 5 (2002), pp. 2143-2159. Zbl1007.20030MR1904630
  5. [5] D. BUBBOLONI - M. S. LUCIDO - TH. WEIGEL, 2-coverings of Classical groups, in preparation. Zbl1156.20039
  6. [6] R. W. CARTER, Conjugacy Classes in Weyl Groups, Compositio math., 25 (1972), pp. 1-59. Zbl0254.17005MR318337
  7. [7] R. W. CARTER, Simple Groups of Lie Type, John Wiley, London, 1989. Zbl0723.20006MR1013112
  8. [8] R. W. CARTER, Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, John Wiley, Chichester, 1993. Zbl0567.20023MR1266626
  9. [9] J. H. CONWAY - R. T. CURTIS - S. P. NORTON - R. A. PARKER - R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985. Zbl0568.20001MR827219
  10. [10] R. H. DYE, Interrelations of Symplectic and Orthogonal Groups in Characteristic Two, J. Algebra, 59 (1979), pp. 202-221. Zbl0409.20033MR541675
  11. [11] E. B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl., 6 (1957), pp. 111-244. Zbl0077.03404
  12. [12] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York, 1972. Zbl0254.17004MR323842
  13. [13] J. E. HUMPHREYS, Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21, Springer-Verlag, New-York, 1987. Zbl0325.20039MR396773
  14. [14] B. HUPPERT, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 134, Springer-Verlag, Berlin, 1967. Zbl0217.07201MR224703
  15. [15] W. JEHNE, Kronecker classes of algebraic number fields, J. Number Theory, 9, no. 3 (1977), pp. 279-320. Zbl0392.12003MR447184
  16. [16] R. I. LAWTHER, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra, 23 (1995), pp. 4125-4156. Zbl0880.20034MR1351124
  17. [17] C. E. PRAEGER, Kronecker classes of fields and covering subgroups of finite groups, J. Austral. Math. Soc. Ser. A, 57, no. 1 (1994), pp. 17-34. Zbl0818.20020MR1279283
  18. [18] D. J. S. ROBINSON, A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1982. Zbl0483.20001MR648604
  19. [19] J. SAXL, On a question of W. Jehne concerning covering subgroups of groups and Kronecker classes of fields, J. London Math. Soc. (2) 38, no. 2 (1988), pp. 243-249. Zbl0663.12010MR966296
  20. [20] J. SAXL - G. M. SEITZ, Subgroups of algebraic groups containing regular unipotent elements, J. London Math. Soc. (2) 55 (1997), pp. 370-386. Zbl0955.20033MR1438641
  21. [21] J-P. SERRE, Galois Cohomology, cinquième édition, révisée et complétée, Springer-Verlag, Berlin, 1997. Zbl0902.12004MR1466966
  22. [22] T. SHOJI, The conjugacy classes of Chevalley groups of type (F4) over finite fields of characteristic p T= 2, J. Fac. Sci. Univ. Tokyo, 21 (1974), pp. 1-17. Zbl0279.20038MR357641
  23. [23] T. A. SPRINGER, Regular Elements of Finite Reflection Groups, Invent. math., 25 (1974), pp. 159-198. Zbl0287.20043MR354894
  24. [24] T. A. SPRINGER - R. STEINBERG, Conjugacy Classes, Seminar on Algebraic Groups and Related Topics (Berlin), (A. Borel et al.), Lecture Notes in Mathematics, vol. 131, Springer-Verlag, 1970, pp. 166-266. Zbl0249.20024MR268192
  25. [25] T. WEIGEL, Generation of Exceptional Groups of Lie-type, Geom. Dedicata, 41 (1992), pp. 63-87. Zbl0758.20001MR1147502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.