Conjugacy classes in the weyl group

R. W. Carter

Compositio Mathematica (1972)

  • Volume: 25, Issue: 1, page 1-59
  • ISSN: 0010-437X

How to cite

top

Carter, R. W.. "Conjugacy classes in the weyl group." Compositio Mathematica 25.1 (1972): 1-59. <http://eudml.org/doc/89111>.

@article{Carter1972,
author = {Carter, R. W.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {1-59},
publisher = {Wolters-Noordhoff Publishing},
title = {Conjugacy classes in the weyl group},
url = {http://eudml.org/doc/89111},
volume = {25},
year = {1972},
}

TY - JOUR
AU - Carter, R. W.
TI - Conjugacy classes in the weyl group
JO - Compositio Mathematica
PY - 1972
PB - Wolters-Noordhoff Publishing
VL - 25
IS - 1
SP - 1
EP - 59
LA - eng
UR - http://eudml.org/doc/89111
ER -

References

top
  1. A. Borel And J. De Siebenthal [1] 'Les sous-groupes fermés connexes de rang maximum des groupes de Lie clos', Comm. Math. Helv.23 (1949), 200-21, Zbl0034.30701MR32659
  2. H.S.M. Coxeter [2] 'The product of generators of a finite group generated by reflections', Duke Math. Journal18 (1951), 765-82. Zbl0044.25603MR45109
  3. E.B. Dynkin [3] 'Semisimple subalgebras of semisimple Lie algebras', A. M. S. Translations (2) 6 (1957), 111-244 Zbl0077.03404
  4. J.S. Frame [4] 'The classes and representations of the groups of 27 lines and 28 bitangents', Annali Math. Pura App.32 (1951). [5] To appear. Zbl0045.00505MR47038
  5. G. Frobenius [6] Berliner Sitz. (1900). 
  6. N. Jacobson [7] Lie Algebras (Interscience, New York). Zbl0121.27504
  7. S. Lang [8] 'Algebraic groups over finite fields' Amer. Math. Jour.78 (1956), 555-63. Zbl0073.37901MR86367
  8. I. Schur [9] 'Über die Darstellung der symmetrischen Gruppe durch lineare homogene Substitutionen', Berliner Sitz. (1908), 664-78. Zbl39.0196.03JFM39.0196.03
  9. W. Specht [10] 'Darstellungstheorie der Hyperoktaedergruppe', Math. Zeit.42 (1937), 629-40. Zbl0017.00603MR1545696JFM63.0077.03
  10. R. Steinberg [11] 'Finite reflection groups', Trans. Amer. Math. Soc.91 (1959) 493-504. Zbl0092.13904MR106428
  11. [12] 'Endomorphisms of linear algebraic groups', Memoirs Amer. Math. Soc.80 (1968). Zbl0164.02902MR230728
  12. G.E. Wall [13] 'On the conjugacy classes in the unitary, symplectic and orthogonal groups', Journal Australian Math. Soc.3 (1963), 1-62. Zbl0122.28102MR150210
  13. A. Young [14] 'On quantitative substitutional analysis IV', Proc. London Math. Soc. (2) 31 (1931), 253-72. Zbl56.0135.02JFM56.0135.02
  14. [15] 'On quantitative substitutional analysis V', Proc. London Math. Soc. (2) 31 (1931) 273-88. 
  15. T. Kondo [16] 'The characters of the Weyl group of type F4', J. Fac. Sci., University of Tokyo11 (1965) 145-153. Zbl0132.27401MR185018
  16. R.W. Carter AND G.B. Elkington [17] 'A note on the parametrisation of conjugacy classes', To appear. Zbl0239.20053MR289521
  17. A. Borel ET AL. [18] Seminar on Algebraic Groups and Related Finite Groups (Springer Lecture Notes, No. 131) Zbl0192.36201

Citations in EuDML Documents

top
  1. Dragomir Đoković, The closure diagram for nilpotent orbits of the split real form of E8
  2. D. Bubboloni, M. S. Lucido, Th. Weigel, Generic 2 -coverings of finite groups of Lie type
  3. Meinolf Geck, Trace functions on Iwahori-Hecke algebras
  4. Florent Jouve, Emmanuel Kowalski, David Zywina, An explicit integral polynomial whose splitting field has Galois group W ( E 8 )
  5. David C. Keys, L -indistinguishability and R -groups for quasisplit groups : unitary groups in even dimension
  6. David Bessis, The dual braid monoid

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.