# Groups in which the derived groups of all 2-generator subgroups are cyclic

Patrizia Longobardi; Mercede Maj; Howard Smith

Rendiconti del Seminario Matematico della Università di Padova (2006)

- Volume: 115, page 29-40
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topLongobardi, Patrizia, Maj, Mercede, and Smith, Howard. "Groups in which the derived groups of all 2-generator subgroups are cyclic." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 29-40. <http://eudml.org/doc/108683>.

@article{Longobardi2006,

author = {Longobardi, Patrizia, Maj, Mercede, Smith, Howard},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {2-generator subgroups; derived groups; finite groups of odd order; torsion-free groups; normal nilpotent subgroups; -groups; locally graded groups},

language = {eng},

pages = {29-40},

publisher = {Seminario Matematico of the University of Padua},

title = {Groups in which the derived groups of all 2-generator subgroups are cyclic},

url = {http://eudml.org/doc/108683},

volume = {115},

year = {2006},

}

TY - JOUR

AU - Longobardi, Patrizia

AU - Maj, Mercede

AU - Smith, Howard

TI - Groups in which the derived groups of all 2-generator subgroups are cyclic

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 2006

PB - Seminario Matematico of the University of Padua

VL - 115

SP - 29

EP - 40

LA - eng

KW - 2-generator subgroups; derived groups; finite groups of odd order; torsion-free groups; normal nilpotent subgroups; -groups; locally graded groups

UR - http://eudml.org/doc/108683

ER -

## References

top- [1] J. L. ALPERIN, On a special class of regular p-groups, Trans. American Math. Soc., 106 (1963), pp. 77-99. Zbl0111.02803MR142640
- [2] W. DIRSCHERL - H. HEINEKEN, A particular class of supersoluble groups, J. Australian Math. Soc. 57 (1994), pp. 357-364. Zbl0822.20014MR1297009
- [3] K. DOERK, Minimal nicht uberauflosbare, endliche Gruppen, Math. Z. 91 (1966), pp. 198-205. Zbl0135.05401MR191962
- [4] D. GORENSTEIN, Finite Groups, Harper and Row, New York, 1968. Zbl0185.05701MR231903
- [5] P. HALL, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), pp. 787-801. Zbl0084.25602MR105441
- [6] Y. K. KIM - A. H. RHEMTULLA, Weak maximality condition and polycyclic groups, Proc. American Math. Soc. 123 (1995), pp. 711-714. Zbl0829.20051MR1285998
- [7] J. C. LENNOX, Bigenetic properties of finitely generated hyper-(abelian-byfinite) groups, J. Australian Math. Soc. 16 (1973), pp. 309-315. Zbl0273.20034MR335643
- [8] S. MCKAY, Finite p-groups, Queen Mary Maths Notes, 18, Queen Mary University of London, 2000. Zbl0977.20011MR1802994
- [9] D. J. S. ROBINSON, Finiteness conditions and generalized soluble groups, 2 vols., Springer-Verlag, 1972. Zbl0243.20033
- [10] D. J. S. ROBINSON, A course in the theory of groups, Springer-Verlag, 1993. Zbl0836.20001MR1261639

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.