Groups in which the derived groups of all 2-generator subgroups are cyclic

Patrizia Longobardi; Mercede Maj; Howard Smith

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 115, page 29-40
  • ISSN: 0041-8994

How to cite

top

Longobardi, Patrizia, Maj, Mercede, and Smith, Howard. "Groups in which the derived groups of all 2-generator subgroups are cyclic." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 29-40. <http://eudml.org/doc/108683>.

@article{Longobardi2006,
author = {Longobardi, Patrizia, Maj, Mercede, Smith, Howard},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {2-generator subgroups; derived groups; finite groups of odd order; torsion-free groups; normal nilpotent subgroups; -groups; locally graded groups},
language = {eng},
pages = {29-40},
publisher = {Seminario Matematico of the University of Padua},
title = {Groups in which the derived groups of all 2-generator subgroups are cyclic},
url = {http://eudml.org/doc/108683},
volume = {115},
year = {2006},
}

TY - JOUR
AU - Longobardi, Patrizia
AU - Maj, Mercede
AU - Smith, Howard
TI - Groups in which the derived groups of all 2-generator subgroups are cyclic
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 29
EP - 40
LA - eng
KW - 2-generator subgroups; derived groups; finite groups of odd order; torsion-free groups; normal nilpotent subgroups; -groups; locally graded groups
UR - http://eudml.org/doc/108683
ER -

References

top
  1. [1] J. L. ALPERIN, On a special class of regular p-groups, Trans. American Math. Soc., 106 (1963), pp. 77-99. Zbl0111.02803MR142640
  2. [2] W. DIRSCHERL - H. HEINEKEN, A particular class of supersoluble groups, J. Australian Math. Soc. 57 (1994), pp. 357-364. Zbl0822.20014MR1297009
  3. [3] K. DOERK, Minimal nicht uberauflosbare, endliche Gruppen, Math. Z. 91 (1966), pp. 198-205. Zbl0135.05401MR191962
  4. [4] D. GORENSTEIN, Finite Groups, Harper and Row, New York, 1968. Zbl0185.05701MR231903
  5. [5] P. HALL, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), pp. 787-801. Zbl0084.25602MR105441
  6. [6] Y. K. KIM - A. H. RHEMTULLA, Weak maximality condition and polycyclic groups, Proc. American Math. Soc. 123 (1995), pp. 711-714. Zbl0829.20051MR1285998
  7. [7] J. C. LENNOX, Bigenetic properties of finitely generated hyper-(abelian-byfinite) groups, J. Australian Math. Soc. 16 (1973), pp. 309-315. Zbl0273.20034MR335643
  8. [8] S. MCKAY, Finite p-groups, Queen Mary Maths Notes, 18, Queen Mary University of London, 2000. Zbl0977.20011MR1802994
  9. [9] D. J. S. ROBINSON, Finiteness conditions and generalized soluble groups, 2 vols., Springer-Verlag, 1972. Zbl0243.20033
  10. [10] D. J. S. ROBINSON, A course in the theory of groups, Springer-Verlag, 1993. Zbl0836.20001MR1261639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.