The Birkhoff-Neumann Embedding of Relatively Free Groups

Rolf Brandl; Gabriella Corsi Tani; Luigi Serena

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 115, page 85-97
  • ISSN: 0041-8994

How to cite

top

Brandl, Rolf, Corsi Tani, Gabriella, and Serena, Luigi. "The Birkhoff-Neumann Embedding of Relatively Free Groups." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 85-97. <http://eudml.org/doc/108687>.

@article{Brandl2006,
author = {Brandl, Rolf, Corsi Tani, Gabriella, Serena, Luigi},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite groups; varieties of groups; relatively free groups; subgroups of direct products; minimal non-Abelian groups; dihedral groups; minimal non-nilpotent groups},
language = {eng},
pages = {85-97},
publisher = {Seminario Matematico of the University of Padua},
title = {The Birkhoff-Neumann Embedding of Relatively Free Groups},
url = {http://eudml.org/doc/108687},
volume = {115},
year = {2006},
}

TY - JOUR
AU - Brandl, Rolf
AU - Corsi Tani, Gabriella
AU - Serena, Luigi
TI - The Birkhoff-Neumann Embedding of Relatively Free Groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 85
EP - 97
LA - eng
KW - finite groups; varieties of groups; relatively free groups; subgroups of direct products; minimal non-Abelian groups; dihedral groups; minimal non-nilpotent groups
UR - http://eudml.org/doc/108687
ER -

References

top
  1. [1] G. BIRKHOFF, On the structure of abstract algebras, Proc. Cambridge Philos. Soc., 31 (1935), pp. 433-454. Zbl0013.00105JFM61.1026.07
  2. [2] Y. K. CHYE, Minimal generating sets for some wreath products of groups, Bull. Austral. Math. Soc., 9 (1973), pp. 127-136. Zbl0264.20030MR507007
  3. [3] P. M. COHN, Algebra, vol. 1, Wiley, New York, 1974. Zbl0272.00003MR360046
  4. [4] B. FINE, The free groups in the dihedral variety, Arch. Math., 46 (1986), pp. 193-197. Zbl0569.20021MR834835
  5. [5] W. GASCHÜTZ, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden, Math. Z., 60 (1954), pp. 274-286. Zbl0056.02401MR65564
  6. [6] G. HIGMAN, The orders of relatively free groups, In: Proc. Internat. Conf. Theory of Groups. Austral. Nat. Univ. Canberra 1965 (Gordon and Breach 1967), pp. 153-165. Zbl0166.28001MR219597
  7. [7] G. HIGMAN, Some remarks on varieties of groups, Quart. J. Oxford, (2) 10 (1959), pp. 165-178. Zbl0089.01302MR113925
  8. [8] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin, 1967. Zbl0217.07201MR224703
  9. [9] L. G. KOVÁCS, Free groups in a dihedral variety, Proc. of the Royal Irish Academy, 89 A (1989), pp. 115-117. Zbl0697.20012MR1021229
  10. [10] L. G. KOVÁCS, M.F. NEWMAN, On non-Cross varieties of groups, J. Austral. Math. Soc. 12 (1971), pp. 129-144. Zbl0221.20037MR292915
  11. [11] B. H. NEUMANN, Identical relations in groups I, Math. Ann., 114 (1937), pp. 506-525. Zbl0016.35102MR1513153
  12. [12] H. NEUMANN, Varieties of groups, Springer-Verlag, Berlin, 1967. Zbl0251.20001MR215899
  13. [13] P. M. NEUMANN, On the structure of standard wreath products of groups, Math. Z., 84 (1964), pp. 343-373. Zbl0122.02901MR188280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.