Self- c -injective abelian groups

Simion Breaz; Grigore Călugăreanu

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 193-203
  • ISSN: 0041-8994

How to cite

top

Breaz, Simion, and Călugăreanu, Grigore. "Self-$c$-injective abelian groups." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 193-203. <http://eudml.org/doc/108691>.

@article{Breaz2006,
author = {Breaz, Simion, Călugăreanu, Grigore},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {self-injective Abelian groups; quasi-pure-injective groups; honest mixed Abelian groups; direct sums; quasi-injective primary Abelian groups},
language = {eng},
pages = {193-203},
publisher = {Seminario Matematico of the University of Padua},
title = {Self-$c$-injective abelian groups},
url = {http://eudml.org/doc/108691},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Breaz, Simion
AU - Călugăreanu, Grigore
TI - Self-$c$-injective abelian groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 193
EP - 203
LA - eng
KW - self-injective Abelian groups; quasi-pure-injective groups; honest mixed Abelian groups; direct sums; quasi-injective primary Abelian groups
UR - http://eudml.org/doc/108691
ER -

References

top
  1. [1] D. ARNOLD - C. I. VINSONHALER - W. J. WICKLESS, Quasi-pure projective and injective torsion free abelian groups of rank 2. Rocky Mountain J. Math. 6, no. 1 (1976), pp. 61-70. Zbl0344.20040MR444799
  2. [2] D. M. ARNOLD - B. O'BRIEN - J. D. REID, Quasipure injective and projective torsion-free abelian groups of finite rank. Proc. London Math. Soc. (3) 38, no. 3 (1979), pp. 532-544. Zbl0406.20044MR532986
  3. [3] K. BENABDALLAH - A. LAROCHE, Les groupes abéliens quasi-purs injectifs sans torsion complètement décomposables. (French) Rend. Mat. (6) 10 no. 2-3 (1977), pp. 305-312. Zbl0375.20040MR473045
  4. [4] K. BENABDALLAH - R. BRADLEY - A. LAROCHE, Sur les groupes quasi-p-nets injectifs et projectifs. (French) Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976), Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 228-239. Zbl0378.20041MR460493
  5. [5] N.V. DUNG - D. VAN HUYNH - P.F. SMITH - R. WISBAUER, Extending modules. Harlow (1994). Zbl0841.16001MR1312366
  6. [6] L. FUCHS, Infinite Abelian groups, vol. 1 (1970) and 2 (1973), Academic Press. Zbl0209.05503
  7. [7] L. FUCHS - L. SALCE, Modules over non-Noetherian domains. Mathematical Surveys and Monographs, 84. American Mathematical Society, Providence, RI (2001). Zbl0973.13001MR1794715
  8. [8] P. GOETERS - C. VINSONHALER - W. WICKLESS, A generalization of quasipure injective torsion-free abelian groups. Houston J. Math. vol. 22, no. 3 (1996), pp. 473-384. Zbl0882.20036
  9. [9] H.P. GOETERS - W.J. WICKLESS, Qqpi groups and quasi-equivalence. Proc. AMS, vol. 126, no. 11 (1998), pp. 3145-3150. Zbl0910.20036
  10. [10] M.A. KIL'P, Quasi-injective abelian groups. [Russian], Vestnik Mosk. Univ., 22 nr. 3 (1967), pp. 3-4. Zbl0147.01003
  11. [11] F. LOONSTRA, Closed submodules. Abelian group theory (Honolulu, Hawaii, 1983), Lecture Notes in Math., 1006, Springer, Berlin-New York, (1983), pp. 630-638. Zbl0519.13010
  12. [12] G. RENAULT, Étude des sous-modules compléments dans un module. (French) Bull. Soc. Math. France Mém. 9, (1967) 79 pp. ??? Zbl0154.28003
  13. [13] C. SANTA-CLARA - P.F. SMITH, Modules which are self-injective relative to closed submodules. In 'Algebra and its Applications' (Athens, Ohio, 1999), Contemporary Mathematics 259, AMS, Providence, (2000), pp. 487- 499. Zbl0968.16002MR1780543
  14. [14] C. SANTA-CLARA - F. SMITH PATRICK, Direct products of simple modules over Dedekind domains. Arch. Math. (Basel) 82 no. 1 (2004), pp. 8-12. Zbl1055.16003MR2034463
  15. [15] C. VINSONHALER, Almost quasi-pure injective abelian groups , Rocky Mount. J. Math., vol. 9, no. 3 (1979), pp. 569-576. Zbl0388.20043MR528753

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.