Some remarks on global dimensions for cotorsion pairs

Edgar E. Enochs; Hae-Sik Kim

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 205-209
  • ISSN: 0041-8994

How to cite

top

Enochs, Edgar E., and Kim, Hae-Sik. "Some remarks on global dimensions for cotorsion pairs." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 205-209. <http://eudml.org/doc/108693>.

@article{Enochs2006,
author = {Enochs, Edgar E., Kim, Hae-Sik},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {cotorsion pairs; global dimensions},
language = {eng},
pages = {205-209},
publisher = {Seminario Matematico of the University of Padua},
title = {Some remarks on global dimensions for cotorsion pairs},
url = {http://eudml.org/doc/108693},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Enochs, Edgar E.
AU - Kim, Hae-Sik
TI - Some remarks on global dimensions for cotorsion pairs
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 205
EP - 209
LA - eng
KW - cotorsion pairs; global dimensions
UR - http://eudml.org/doc/108693
ER -

References

top
  1. [1] S. T. ALDRICH - E. ENOCHS - O. M. G. JENDA - L. OYONARTE, Envelopes and covers by modules of finite injective and projective dimensions, J. Algebra, 242 (2001), pp. 447-459. Zbl0983.16003MR1848954
  2. [2] P. EKLOF, Homological algebra and set theory, Trans. Amer. Math. Soc., 227 (1977), pp. 207-225. Zbl0355.02047MR453520
  3. [3] E. ENOCHS, Minimal pure injective resolutions of flat modules, J. Algebra, 105 (1987), pp. 351-364. Zbl0614.13005MR873670
  4. [4] E. ENOCHS - O. M. G. JENDA - B. TORRECILLAS - J. XU, Torsion theories relative to Ext, preprint. 
  5. [5] E. ENOCHS - J. A. LOPEZ-RAMOS, Kaplansky classes, Rend. Sem. Mat. Univ. Padova, 107 (2002), pp. 67-79. Zbl1099.13019MR1926201
  6. [6] P. EKLOF - J. TRLIFAJ, How to make Ext vanish, Bull. London Math. Soc., 33 (2001), pp. 41-51. Zbl1030.16004MR1798574
  7. [7] S.I. GELFAND - Y. I. MANIN, Methods of Homological Algebra, Springer, 1996. Zbl0855.18001MR1438306
  8. [8] M. HOVEY, Cotorsion pairs, model category structures, and representation theory, Math. Z., 241 (2002), pp. 553-592. Zbl1016.55010MR1938704
  9. [9] C. U. JENSEN, On the vanishing of lim 2– (i) , J. Algebra, 15 (1970), pp. 151-166. Zbl0199.36202MR260839
  10. [10] L. SALCE, Cotorsion theories for abelian groups, Sympos. Math., 23 (1979), pp. 11-32. Zbl0426.20044MR565595
  11. [11] J. XU, Flat covers of modules, Lecture Notes in Math. 1634, Springer-Verlag, 1996. Zbl0860.16002MR1438789

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.