Abelian groups that cannot be factored without periodic factor

Sándor Szabó

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 261-269
  • ISSN: 0041-8994

How to cite

top

Szabó, Sándor. "Abelian groups that cannot be factored without periodic factor." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 261-269. <http://eudml.org/doc/108696>.

@article{Szabó2006,
author = {Szabó, Sándor},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite Abelian groups; factorisations into subsets; periodic factors},
language = {eng},
pages = {261-269},
publisher = {Seminario Matematico of the University of Padua},
title = {Abelian groups that cannot be factored without periodic factor},
url = {http://eudml.org/doc/108696},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Szabó, Sándor
TI - Abelian groups that cannot be factored without periodic factor
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 261
EP - 269
LA - eng
KW - finite Abelian groups; factorisations into subsets; periodic factors
UR - http://eudml.org/doc/108696
ER -

References

top
  1. [1] K. AMIN - K. CORRÁDI - A. D. SANDS, The Hajós property for 2-groups, Acta Math. Hungar. 89 (2000), pp. 189-198. Zbl1004.20032MR1912599
  2. [2] K. CORRÁDI - S. SZABÓ, Factorization of periodic subsets II, Math. Japonica. 36 (1991), pp. 165-172. Zbl0726.20036MR1093368
  3. [3] C. DE FELICE, An application of Hajós factorization to variable length codes, Theoret. Comp. Sci. 164 (1996), pp. 223-252. Zbl0864.94014MR1411206
  4. [4] G. HAJÓS, Sur la factorisation des groupes abèliens, CÏasopis Pés. Mat. Fys. 74 (1949), pp. 157-162. Zbl0039.01901MR45727
  5. [5] R. HILL - R. W. IRVING, On group partitions associated with lower bounds for symmetric Ramsey numbers, European Journal of Combinatorics 3 (1982), pp. 35-50. Zbl0485.05045MR656010
  6. [6] J. C. LAGARIAS - Y. WANG, Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), pp. 73-98. Zbl0898.47002MR1442160
  7. [7] L. RÉDEI, Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), pp. 329-373. Zbl0138.26001MR186729
  8. [8] A. D. SANDS, On the factorisation of finite abelian groups II, Acta Math. Acad. Sci. Hungar. 13 (1962), pp. 153-169. Zbl0101.26502MR142620
  9. [9] A. D. SANDS, Factoring finite abelian groups, Journal of Alg. 275 (2004), pp. 540-549. Zbl1081.20063MR2052624
  10. [10] A. D. SANDS - S. SZABÓ, Factorization of periodic subsets, Acta Math. Acad. Sci. Hungar. 57 (1991), pp. 159-167. Zbl0754.20014MR1128852
  11. [11] S. K. STEIN, Algebraic tiling, Amer. Math. Monthly, 81 (1974), pp. 445-462. Zbl0284.20048MR340063
  12. [12] S. Szabó, Factoring a certain type of 2-groups by subsets, Rivista di Matematica, 6 (1997), pp. 25-29. Zbl0931.20040MR1632691
  13. [13] R. TIJDEMAN, Decomposition of the integers as a direct sum of two subsets, Number Theory (Paris 1992-1993) London Math. Soc. Lecture Note Ser. 215 Cambridge Univ. Press, Cambridge 1995, pp. 261-276. Zbl0824.11006MR1345184

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.