Abelian groups that cannot be factored without periodic factor
Rendiconti del Seminario Matematico della Università di Padova (2006)
- Volume: 116, page 261-269
- ISSN: 0041-8994
Access Full Article
topHow to cite
topSzabó, Sándor. "Abelian groups that cannot be factored without periodic factor." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 261-269. <http://eudml.org/doc/108696>.
@article{Szabó2006,
author = {Szabó, Sándor},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite Abelian groups; factorisations into subsets; periodic factors},
language = {eng},
pages = {261-269},
publisher = {Seminario Matematico of the University of Padua},
title = {Abelian groups that cannot be factored without periodic factor},
url = {http://eudml.org/doc/108696},
volume = {116},
year = {2006},
}
TY - JOUR
AU - Szabó, Sándor
TI - Abelian groups that cannot be factored without periodic factor
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 261
EP - 269
LA - eng
KW - finite Abelian groups; factorisations into subsets; periodic factors
UR - http://eudml.org/doc/108696
ER -
References
top- [1] K. AMIN - K. CORRÁDI - A. D. SANDS, The Hajós property for 2-groups, Acta Math. Hungar. 89 (2000), pp. 189-198. Zbl1004.20032MR1912599
- [2] K. CORRÁDI - S. SZABÓ, Factorization of periodic subsets II, Math. Japonica. 36 (1991), pp. 165-172. Zbl0726.20036MR1093368
- [3] C. DE FELICE, An application of Hajós factorization to variable length codes, Theoret. Comp. Sci. 164 (1996), pp. 223-252. Zbl0864.94014MR1411206
- [4] G. HAJÓS, Sur la factorisation des groupes abèliens, CÏasopis Pés. Mat. Fys. 74 (1949), pp. 157-162. Zbl0039.01901MR45727
- [5] R. HILL - R. W. IRVING, On group partitions associated with lower bounds for symmetric Ramsey numbers, European Journal of Combinatorics 3 (1982), pp. 35-50. Zbl0485.05045MR656010
- [6] J. C. LAGARIAS - Y. WANG, Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), pp. 73-98. Zbl0898.47002MR1442160
- [7] L. RÉDEI, Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), pp. 329-373. Zbl0138.26001MR186729
- [8] A. D. SANDS, On the factorisation of finite abelian groups II, Acta Math. Acad. Sci. Hungar. 13 (1962), pp. 153-169. Zbl0101.26502MR142620
- [9] A. D. SANDS, Factoring finite abelian groups, Journal of Alg. 275 (2004), pp. 540-549. Zbl1081.20063MR2052624
- [10] A. D. SANDS - S. SZABÓ, Factorization of periodic subsets, Acta Math. Acad. Sci. Hungar. 57 (1991), pp. 159-167. Zbl0754.20014MR1128852
- [11] S. K. STEIN, Algebraic tiling, Amer. Math. Monthly, 81 (1974), pp. 445-462. Zbl0284.20048MR340063
- [12] S. Szabó, Factoring a certain type of 2-groups by subsets, Rivista di Matematica, 6 (1997), pp. 25-29. Zbl0931.20040MR1632691
- [13] R. TIJDEMAN, Decomposition of the integers as a direct sum of two subsets, Number Theory (Paris 1992-1993) London Math. Soc. Lecture Note Ser. 215 Cambridge Univ. Press, Cambridge 1995, pp. 261-276. Zbl0824.11006MR1345184
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.