A Rédei type factorization result for a special 2-group.
Corrádi, Keresztély, Szabó, Sándor (2000)
Mathematica Pannonica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Corrádi, Keresztély, Szabó, Sándor (2000)
Mathematica Pannonica
Similarity:
Obaid, Evelyn E. (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Szabó, Sándor, Amin, Khalid (1996)
Mathematica Pannonica
Similarity:
Corrádi, Keresztély, Szabó, Sándor (2005)
Mathematica Pannonica
Similarity:
Corrádi, Keresztély, Szabó, Sándor (1998)
Mathematica Pannonica
Similarity:
Corrádi, Keresztély, Szabó, Sándor (1994)
Mathematica Pannonica
Similarity:
Corrádi, Keresztély, Szabó, Sándor (2009)
Integers
Similarity:
Keresztély Corrádi, Sándor Szabó (2010)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
It is proved that if a finite abelian group is factored into a direct product of lacunary cyclic subsets, then at least one of the factors must be periodic. This result generalizes Hajós's factorization theorem.
D. J. Grynkiewicz, O. Ordaz, M. T. Varela, F. Villarroel (2007)
Acta Arithmetica
Similarity:
Sándor Szabó (2010)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.
J. Ligęza (1977)
Annales Polonici Mathematici
Similarity: