Kloosterman sums for prime powers in P-adic fields

Stanley J. Gurak[1]

  • [1] University of San Diego Alcala Park San Diego, CA 92110, USA

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 1, page 175-201
  • ISSN: 1246-7405

Abstract

top
Let K be a field of degree n over Q p , the field of rational p -adic numbers, say with residue degree f , ramification index e and differential exponent d . Let O be the ring of integers of K and P its unique prime ideal. The trace and norm maps for K / Q p are denoted T r and N , respectively. Fix q = p r , a power of a prime p , and let η be a numerical character defined modulo q and of order o ( η ) . The character η extends to the ring of p -adic integers p in the natural way; namely η ( u ) = η ( u ˜ ) , where u ˜ denotes the residue class of u modulo q , and similarly for the root of unity ζ q u = e x p ( 2 π i u ˜ / q ) . Fix a positive integer γ r e - d for which N ( 1 + P γ ) 1 + q p so that the (twisted) Kloosterman sums R ( η , z ) = α ( O / P γ ) * η ( N α ) ζ q T r α + z / N α ( z Z / q Z * ) are well-defined.Saliè explicitly determined R ( η , z ) in the classical case n = 1 (so K = Q p ) for q = p r with r > 1 and o ( η ) = 1 or 2 . Here I generalize Saliè’s result for the general case n > 1 for characters η with o ( η ) | p - 1 (also o ( η ) = 2 when p = 2 ), and for all γ r e - d > 1 but for a few small exceptional values r . My evaluation relies on the author’s recent explicit determination of Gauss sums for prime powers in p -adic fields and exponential sums of the form χ ( x ) a x ζ q b x .

How to cite

top

Gurak, Stanley J.. "Kloosterman sums for prime powers in P-adic fields." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 175-201. <http://eudml.org/doc/10870>.

@article{Gurak2009,
abstract = {Let $K$ be a field of degree $n$ over $\{\bf Q\}_\{p\}$, the field of rational $p$-adic numbers, say with residue degree $f$, ramification index $e$ and differential exponent $d$. Let $O$ be the ring of integers of $K$ and $\{\it P\}$ its unique prime ideal. The trace and norm maps for $K/\{\bf Q\}_\{p\}$ are denoted $Tr$ and $N$, respectively. Fix $q=p^\{r\}$, a power of a prime $p$, and let $\eta $ be a numerical character defined modulo $q$ and of order $o(\eta )$. The character $\eta $ extends to the ring of $p$-adic integers $\mathbb\{Z\}_p$ in the natural way; namely $\eta (u)=\eta (\tilde\{u\})$, where $\tilde\{u\}$ denotes the residue class of $u$ modulo $q$, and similarly for the root of unity $\zeta _\{q\}^\{u\}=exp(2\pi i \tilde\{u\}/q)$. Fix a positive integer $\gamma \ge re-d$ for which $N(1+\{\it P\}^\{\gamma \}) \subseteq 1 + q\{\mathbb\{Z\}_p\}$ so that the (twisted) Kloosterman sums\[ R(\eta ,z)=\sum \_\{\alpha \in (O/\{\it P\}^\{\gamma \})^\{*\}\} \eta (N\alpha ) \zeta \_\{q\}^\{Tr \; \alpha + z/N\alpha \} \;\;\;\;\;(z \in \{\bf Z\}/q\{\bf Z\}^\{*\} )\]are well-defined.Saliè explicitly determined $R(\eta ,z)$ in the classical case $n=1$ (so $K=\{\bf Q\}_\{p\}$) for $q=p^\{r\}$ with $r&gt;1$ and $o(\eta )=1$ or $2$. Here I generalize Saliè’s result for the general case $n &gt; 1$ for characters $\eta $ with $o(\eta )|p-1$ (also $o(\eta )=2$ when $p=2$), and for all $\gamma \ge re-d &gt;1$ but for a few small exceptional values $r$. My evaluation relies on the author’s recent explicit determination of Gauss sums for prime powers in $p$-adic fields and exponential sums of the form $\sum \chi (x)^\{ax\}\zeta _\{q\}^\{bx\}$.},
affiliation = {University of San Diego Alcala Park San Diego, CA 92110, USA},
author = {Gurak, Stanley J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Kloosterman sums; -adic fields},
language = {eng},
number = {1},
pages = {175-201},
publisher = {Université Bordeaux 1},
title = {Kloosterman sums for prime powers in P-adic fields},
url = {http://eudml.org/doc/10870},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Gurak, Stanley J.
TI - Kloosterman sums for prime powers in P-adic fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 175
EP - 201
AB - Let $K$ be a field of degree $n$ over ${\bf Q}_{p}$, the field of rational $p$-adic numbers, say with residue degree $f$, ramification index $e$ and differential exponent $d$. Let $O$ be the ring of integers of $K$ and ${\it P}$ its unique prime ideal. The trace and norm maps for $K/{\bf Q}_{p}$ are denoted $Tr$ and $N$, respectively. Fix $q=p^{r}$, a power of a prime $p$, and let $\eta $ be a numerical character defined modulo $q$ and of order $o(\eta )$. The character $\eta $ extends to the ring of $p$-adic integers $\mathbb{Z}_p$ in the natural way; namely $\eta (u)=\eta (\tilde{u})$, where $\tilde{u}$ denotes the residue class of $u$ modulo $q$, and similarly for the root of unity $\zeta _{q}^{u}=exp(2\pi i \tilde{u}/q)$. Fix a positive integer $\gamma \ge re-d$ for which $N(1+{\it P}^{\gamma }) \subseteq 1 + q{\mathbb{Z}_p}$ so that the (twisted) Kloosterman sums\[ R(\eta ,z)=\sum _{\alpha \in (O/{\it P}^{\gamma })^{*}} \eta (N\alpha ) \zeta _{q}^{Tr \; \alpha + z/N\alpha } \;\;\;\;\;(z \in {\bf Z}/q{\bf Z}^{*} )\]are well-defined.Saliè explicitly determined $R(\eta ,z)$ in the classical case $n=1$ (so $K={\bf Q}_{p}$) for $q=p^{r}$ with $r&gt;1$ and $o(\eta )=1$ or $2$. Here I generalize Saliè’s result for the general case $n &gt; 1$ for characters $\eta $ with $o(\eta )|p-1$ (also $o(\eta )=2$ when $p=2$), and for all $\gamma \ge re-d &gt;1$ but for a few small exceptional values $r$. My evaluation relies on the author’s recent explicit determination of Gauss sums for prime powers in $p$-adic fields and exponential sums of the form $\sum \chi (x)^{ax}\zeta _{q}^{bx}$.
LA - eng
KW - Kloosterman sums; -adic fields
UR - http://eudml.org/doc/10870
ER -

References

top
  1. E. Artin, Algebraic Numbers and Algebraic Functions. Gordon and Breach, New York, (1967). Zbl0194.35301MR237460
  2. B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums. Wiley-Interscience, New York, 1998. Zbl0906.11001MR1625181
  3. J. Bourgain, Exponential sum estimates on subgroups of Z / q Z * , q arbitary. J. Analyse Math. 97 (2005), 317–355. Zbl1183.11045MR2274981
  4. J. Bourgain, M-C. Chang, Exponential sums estimates over subgroups and almost subgroups of Z / q Z * , where q is composite with few prime factors (to appear). Zbl1183.11047
  5. P. Deligne, Applications de la formula des traces aux sommes trigonometriques. In Cohomologie étale (SGA 4.5), 168–232, Lecture Notes in Math. 569, Springer-Verlag, Berlin, 1977. Zbl0349.10031
  6. R.J. Evans, Gauss sums and Kloosterman sums over residue rings of algebraic integers. Trans AMS 353, no. 11 (2001), 4429–4445. Zbl1002.11065MR1851177
  7. S. Gurak, Minimal polynomials for Gauss periods with f = 2 . Acta Arith. 121, no. 3 (2006), 233–257. Zbl1113.11047MR2218343
  8. S. Gurak, Polynomials for Kloosterman Sums. Can. Math. Bull. 50, no. 1 (2007), 71–84. Zbl1135.11042MR2296626
  9. S. Gurak, On the minimal polynomial of Gauss periods for prime powers. Math. Comp. 75 (2006), 2021–2035. Zbl1122.11051MR2240647
  10. S. Gurak, Exponential sums of the form χ ( x ) a x ζ m b x . Acta Arith. 126, no. 3 (2007), 239–259. Zbl1167.11028MR2289959
  11. S. Gurak, Polynomials for Hyper-Kloosterman Sums. Inter. Journal of Number Theory 4, no. 6 (2008), 959–972. Zbl1231.11092MR2483305
  12. S. Gurak, Explicit values of multi-dimensional Kloosterman sums for prime powers II. Math. Comp. 77 (2008), 475-493. Zbl1130.11043MR2353962
  13. S. Gurak, Gauss sums for prime powers in p -adic fields (to appear). Zbl1208.11095
  14. N. Katz, Gauss Sums, Kloosterman Sums and Monodromy Groups. Annals of Math. Studies 116, Princeton University Press, Princeton, 1998. Zbl0675.14004MR955052
  15. H.D. Kloosterman, On the representation of a number in the form a x 2 + b y 2 + c z 2 + d t 2 . Acta Math. 49 (1926), 407–464. Zbl53.0155.01
  16. J.L. Mauclaire, Sommes de Gauss modulo p α , I. Proc. Jap. Acad. Ser A 59 (1983), 109–112. Zbl0516.10028MR711310
  17. J.L. Mauclaire, Sommes de Gauss modulo p α , II. Proc. Jap. Acad. Ser A 59 (1983), 161–163. Zbl0516.10028MR711325
  18. H. Saliè, Uber die Kloostermanschen Summen S(u,v:q). Math. Z. 34 (1932), 91–109. Zbl0002.12801MR1545243
  19. R.A. Smith, On n-dimensional Kloosterman sums. J. Number Theory 11 (1979), 324–343. Zbl0409.10024MR544261

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.