Kloosterman sums for prime powers in P-adic fields
- [1] University of San Diego Alcala Park San Diego, CA 92110, USA
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 1, page 175-201
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGurak, Stanley J.. "Kloosterman sums for prime powers in P-adic fields." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 175-201. <http://eudml.org/doc/10870>.
@article{Gurak2009,
abstract = {Let $K$ be a field of degree $n$ over $\{\bf Q\}_\{p\}$, the field of rational $p$-adic numbers, say with residue degree $f$, ramification index $e$ and differential exponent $d$. Let $O$ be the ring of integers of $K$ and $\{\it P\}$ its unique prime ideal. The trace and norm maps for $K/\{\bf Q\}_\{p\}$ are denoted $Tr$ and $N$, respectively. Fix $q=p^\{r\}$, a power of a prime $p$, and let $\eta $ be a numerical character defined modulo $q$ and of order $o(\eta )$. The character $\eta $ extends to the ring of $p$-adic integers $\mathbb\{Z\}_p$ in the natural way; namely $\eta (u)=\eta (\tilde\{u\})$, where $\tilde\{u\}$ denotes the residue class of $u$ modulo $q$, and similarly for the root of unity $\zeta _\{q\}^\{u\}=exp(2\pi i \tilde\{u\}/q)$. Fix a positive integer $\gamma \ge re-d$ for which $N(1+\{\it P\}^\{\gamma \}) \subseteq 1 + q\{\mathbb\{Z\}_p\}$ so that the (twisted) Kloosterman sums\[ R(\eta ,z)=\sum \_\{\alpha \in (O/\{\it P\}^\{\gamma \})^\{*\}\} \eta (N\alpha ) \zeta \_\{q\}^\{Tr \; \alpha + z/N\alpha \} \;\;\;\;\;(z \in \{\bf Z\}/q\{\bf Z\}^\{*\} )\]are well-defined.Saliè explicitly determined $R(\eta ,z)$ in the classical case $n=1$ (so $K=\{\bf Q\}_\{p\}$) for $q=p^\{r\}$ with $r>1$ and $o(\eta )=1$ or $2$. Here I generalize Saliè’s result for the general case $n > 1$ for characters $\eta $ with $o(\eta )|p-1$ (also $o(\eta )=2$ when $p=2$), and for all $\gamma \ge re-d >1$ but for a few small exceptional values $r$. My evaluation relies on the author’s recent explicit determination of Gauss sums for prime powers in $p$-adic fields and exponential sums of the form $\sum \chi (x)^\{ax\}\zeta _\{q\}^\{bx\}$.},
affiliation = {University of San Diego Alcala Park San Diego, CA 92110, USA},
author = {Gurak, Stanley J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Kloosterman sums; -adic fields},
language = {eng},
number = {1},
pages = {175-201},
publisher = {Université Bordeaux 1},
title = {Kloosterman sums for prime powers in P-adic fields},
url = {http://eudml.org/doc/10870},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Gurak, Stanley J.
TI - Kloosterman sums for prime powers in P-adic fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 175
EP - 201
AB - Let $K$ be a field of degree $n$ over ${\bf Q}_{p}$, the field of rational $p$-adic numbers, say with residue degree $f$, ramification index $e$ and differential exponent $d$. Let $O$ be the ring of integers of $K$ and ${\it P}$ its unique prime ideal. The trace and norm maps for $K/{\bf Q}_{p}$ are denoted $Tr$ and $N$, respectively. Fix $q=p^{r}$, a power of a prime $p$, and let $\eta $ be a numerical character defined modulo $q$ and of order $o(\eta )$. The character $\eta $ extends to the ring of $p$-adic integers $\mathbb{Z}_p$ in the natural way; namely $\eta (u)=\eta (\tilde{u})$, where $\tilde{u}$ denotes the residue class of $u$ modulo $q$, and similarly for the root of unity $\zeta _{q}^{u}=exp(2\pi i \tilde{u}/q)$. Fix a positive integer $\gamma \ge re-d$ for which $N(1+{\it P}^{\gamma }) \subseteq 1 + q{\mathbb{Z}_p}$ so that the (twisted) Kloosterman sums\[ R(\eta ,z)=\sum _{\alpha \in (O/{\it P}^{\gamma })^{*}} \eta (N\alpha ) \zeta _{q}^{Tr \; \alpha + z/N\alpha } \;\;\;\;\;(z \in {\bf Z}/q{\bf Z}^{*} )\]are well-defined.Saliè explicitly determined $R(\eta ,z)$ in the classical case $n=1$ (so $K={\bf Q}_{p}$) for $q=p^{r}$ with $r>1$ and $o(\eta )=1$ or $2$. Here I generalize Saliè’s result for the general case $n > 1$ for characters $\eta $ with $o(\eta )|p-1$ (also $o(\eta )=2$ when $p=2$), and for all $\gamma \ge re-d >1$ but for a few small exceptional values $r$. My evaluation relies on the author’s recent explicit determination of Gauss sums for prime powers in $p$-adic fields and exponential sums of the form $\sum \chi (x)^{ax}\zeta _{q}^{bx}$.
LA - eng
KW - Kloosterman sums; -adic fields
UR - http://eudml.org/doc/10870
ER -
References
top- E. Artin, Algebraic Numbers and Algebraic Functions. Gordon and Breach, New York, (1967). Zbl0194.35301MR237460
- B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums. Wiley-Interscience, New York, 1998. Zbl0906.11001MR1625181
- J. Bourgain, Exponential sum estimates on subgroups of , arbitary. J. Analyse Math. 97 (2005), 317–355. Zbl1183.11045MR2274981
- J. Bourgain, M-C. Chang, Exponential sums estimates over subgroups and almost subgroups of , where is composite with few prime factors (to appear). Zbl1183.11047
- P. Deligne, Applications de la formula des traces aux sommes trigonometriques. In Cohomologie étale (SGA 4.5), 168–232, Lecture Notes in Math. 569, Springer-Verlag, Berlin, 1977. Zbl0349.10031
- R.J. Evans, Gauss sums and Kloosterman sums over residue rings of algebraic integers. Trans AMS 353, no. 11 (2001), 4429–4445. Zbl1002.11065MR1851177
- S. Gurak, Minimal polynomials for Gauss periods with . Acta Arith. 121, no. 3 (2006), 233–257. Zbl1113.11047MR2218343
- S. Gurak, Polynomials for Kloosterman Sums. Can. Math. Bull. 50, no. 1 (2007), 71–84. Zbl1135.11042MR2296626
- S. Gurak, On the minimal polynomial of Gauss periods for prime powers. Math. Comp. 75 (2006), 2021–2035. Zbl1122.11051MR2240647
- S. Gurak, Exponential sums of the form . Acta Arith. 126, no. 3 (2007), 239–259. Zbl1167.11028MR2289959
- S. Gurak, Polynomials for Hyper-Kloosterman Sums. Inter. Journal of Number Theory 4, no. 6 (2008), 959–972. Zbl1231.11092MR2483305
- S. Gurak, Explicit values of multi-dimensional Kloosterman sums for prime powers II. Math. Comp. 77 (2008), 475-493. Zbl1130.11043MR2353962
- S. Gurak, Gauss sums for prime powers in -adic fields (to appear). Zbl1208.11095
- N. Katz, Gauss Sums, Kloosterman Sums and Monodromy Groups. Annals of Math. Studies 116, Princeton University Press, Princeton, 1998. Zbl0675.14004MR955052
- H.D. Kloosterman, On the representation of a number in the form . Acta Math. 49 (1926), 407–464. Zbl53.0155.01
- J.L. Mauclaire, Sommes de Gauss modulo , I. Proc. Jap. Acad. Ser A 59 (1983), 109–112. Zbl0516.10028MR711310
- J.L. Mauclaire, Sommes de Gauss modulo , II. Proc. Jap. Acad. Ser A 59 (1983), 161–163. Zbl0516.10028MR711325
- H. Saliè, Uber die Kloostermanschen Summen S(u,v:q). Math. Z. 34 (1932), 91–109. Zbl0002.12801MR1545243
- R.A. Smith, On n-dimensional Kloosterman sums. J. Number Theory 11 (1979), 324–343. Zbl0409.10024MR544261
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.