A weak Néron model with applications to -adic dynamical systems
We prove the rationality of the Łojasiewicz exponent for p-adic semi-algebraic functions without compactness hypothesis. In the parametric case, we show that the parameter space can be divided into a finite number of semi-algebraic sets on each of which the Łojasiewicz exponent is constant.
We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for , 1 < p < ∞. We also prove that this system, normalized in , is a democratic basis of . This also proves that the Haar system is a greedy basis of for 1 < p < ∞.
Let be a field of degree over , the field of rational -adic numbers, say with residue degree , ramification index and differential exponent . Let be the ring of integers of and its unique prime ideal. The trace and norm maps for are denoted and , respectively. Fix , a power of a prime , and let be a numerical character defined modulo and of order . The character extends to the ring of -adic integers in the natural way; namely , where denotes the residue class...