Pure extensions of locally compact abelian groups

Peter Loth

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 31-40
  • ISSN: 0041-8994

How to cite

top

Loth, Peter. "Pure extensions of locally compact abelian groups." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 31-40. <http://eudml.org/doc/108700>.

@article{Loth2006,
author = {Loth, Peter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {31-40},
publisher = {Seminario Matematico of the University of Padua},
title = {Pure extensions of locally compact abelian groups},
url = {http://eudml.org/doc/108700},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Loth, Peter
TI - Pure extensions of locally compact abelian groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 31
EP - 40
LA - eng
UR - http://eudml.org/doc/108700
ER -

References

top
  1. [AA] D. L. ARMACOST and W. L. ARMACOST, Uniqueness in structure theorems for LCA groups, Can. J. Math. 30 (1978), pp. 593-599. Zbl0358.22001MR578649
  2. [A] D. L. ARMACOST, The Structure of Locally Compact Abelian Groups, Marcel Dekker Inc., New York, 1981. Zbl0509.22003MR637201
  3. [B] J. BRACONNIER, Sur les groupes topologiques localement compacts, J. Math. Pures Appl., N.S. 27 (1948), pp. 1-85. Zbl0034.16401MR25473
  4. [F] L. FUCHS, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970. Zbl0209.05503MR255673
  5. [Fu1] R. O. FULP, Homological study of purity in locally compact groups, Proc. London Math. Soc. 21 (1970), pp. 501-512. Zbl0222.22004MR279229
  6. [Fu2] R. O. FULP, Splitting locally compact abelian groups, Michigan Math. J. 19 (1972), pp. 47-55. Zbl0229.22005MR294559
  7. [FG1] R. O. FULP and P. GRIFFITH, Extensions of locally compact abelian groups I, Trans. Amer. Math. Soc. 154 (1971), pp. 341-356. Zbl0216.34302MR272870
  8. [FG2] R. O. FULP and P. GRIFFITH, Extensions of locally compact abelian groups II, Trans. Amer. Math. Soc. 154 (1971), pp. 357-363. Zbl0216.34302MR272870
  9. [HH] S. HARTMAN and A. HULANICKI, Les sous-groupes purs et leurs duals, Fund. Math. 45 (1957), pp. 71-77. Zbl0083.25501MR92102
  10. [HR] E. HEWITT and K. ROSS, Abstract Harmonic Analysis, Vol. I, Second Edition, Springer Verlag, Berlin, 1979. Zbl0416.43001MR551496
  11. [K] I. KAPLANSKY, Infinite Abelian Groups, Revised Edition, Univ. of Michigan Press, Ann Arbor, Michigan, 1969. Zbl0194.04402MR233887
  12. [Kh] J. A. KHAN, The finite torsion subgroup of an LCA group need not split, Period. Math. Hungar. 31 (1995), pp. 43-44. Zbl0845.22005MR1349292
  13. [L1] P. LOTH, Topologically pure extensions, Abelian Groups, Rings and Modules, Proceedings of the AGRAM 2000 Conference in Perth, Western Australia, July 9-15, 2000, Contemporary Mathematics 273, American Mathematical Society (2001), pp. 191-201. Zbl0980.22007MR1817162
  14. [L2] P. LOTH, On pure subgroups of locally compact abelian groups, Arch. Math. 81, (2003), pp. 255-257. Zbl1037.22006MR2013255
  15. [M] M. MOSKOWITZ, Homological algebra in locally compact abelian groups, Trans. Amer. Math. Soc. 127 (1967), pp. 361-404. Zbl0149.26302MR215016
  16. [R] L. C. ROBERTSON, Connectivity, divisibility and torsion, Trans. Amer. Math. Soc. 128 (1967), pp. 482-505. Zbl0153.04401MR217211
  17. [V] N. VILENKIN, Direct decompositions of topological groups I, Mat. Sb., N. S. 19 (61) (1946), pp. 85-154. [English translation from the Russian by E. Hewitt in A.M.S. Translations, Series 1, Volume 23, Providence, Rhode Island (1950).] Zbl0061.04302MR17283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.