The Monge problem on non-compact manifolds
Rendiconti del Seminario Matematico della Università di Padova (2007)
- Volume: 117, page 147-166
- ISSN: 0041-8994
Access Full Article
topHow to cite
topFigalli, Alessio. "The Monge problem on non-compact manifolds." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 147-166. <http://eudml.org/doc/108707>.
@article{Figalli2007,
author = {Figalli, Alessio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {147-166},
publisher = {Seminario Matematico of the University of Padua},
title = {The Monge problem on non-compact manifolds},
url = {http://eudml.org/doc/108707},
volume = {117},
year = {2007},
}
TY - JOUR
AU - Figalli, Alessio
TI - The Monge problem on non-compact manifolds
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 147
EP - 166
LA - eng
UR - http://eudml.org/doc/108707
ER -
References
top- [1] L. AMBROSIO - N. GIGLI - G. SAVARÉ, Gradient flows in metric spaces and in the Wasserstein space of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. Zbl1090.35002MR2129498
- [2] L. AMBROSIO - A. PRATELLI, Existence and stability results in the L1 theory of optimal transportation. Lectures notes in Mathematics, Springer Verlag, 1813 (2003), pp. 123-160. Zbl1065.49026MR2006307
- [3] L. AMBROSIO, B. KIRCHHEIM - A. PRATELLI, Existence of optimal transport maps for crystalline norms. Duke Math. J., 125, no. 2 (2004), pp. 207-241. Zbl1076.49022MR2096672
- [4] P. BERNARD - B. BUFFONI, Optimal mass transportation and Mather theory. Journal of the European Mathematical Society, 9, no. 1 (2007), pp. 85-121. Zbl1241.49025MR2283105
- [5] P. BERNARD - B. BUFFONI, The Monge problem for supercritical Mañé potential on compact manifolds. Adv. Math., 207, no. 2 (2006), pp. 691-706. Zbl1137.49037MR2271983
- [6] G. CONTRERAS - J. DELGADO - R. ITURRIAGA, Lagrangians flows: the dynamics of globally minimizing orbits. II. Bol. Soc. Brasil. Mat. (N.S.), 28, no. 2 (1997), pp. 155-196. Zbl0892.58065MR1479500
- [7] A. FATHI, Weak KAM theorems in Lagrangian Dynamics. Book to appear.
- [8] A. FATHI - A. FIGALLI, Optimal transportation on manifolds. Preprint, 2006.
- [9] A. FATHI - E. MADERNA, Weak KAM theorem on noncompact manifolds. Nonlin. Diff. Eq. and Appl., to appear. Zbl1139.49027
- [10] M. FELDMAN - R. J. MCCANN, Monge's transport problem on a Riemannian manifold. Trans. Amer. Math. Soc., 354 (2002), pp. 1667-1697. Zbl1038.49041MR1873023
- [11] L. V. KANTOROVICH, On the transfer of masses. Dokl. Akad. Nauk. SSSR, 37 (1942), pp. 227-229.
- [12] L. V. KANTOROVICH, On a problem of Monge. Uspekhi Mat.Nauk., 3 (1948), pp. 225-226.
- [13] R. MANÕ, Lagrangians flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.), 28, no. 2 (1997), pp. 141-153. MR1479499
- [14] S. T. RACHEV - L. RUSCHENDORF, Mass transportation problems. Vol. I: Theory, Vol. II: Applications. Probability and ita applications, Springer, 1998. Zbl0990.60500MR1619170
- [15] C. VILLANI, Topics in optimal transportation. Graduate Studies in Mathematics, 58 (2004), American Mathematical Society, Providence, RI. Zbl1106.90001MR1964483
- [16] C. VILLANI, Optimal transport, old and new. Lecture notes, 2005 Saint-Flour summer school. MR2459454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.