The Monge problem on non-compact manifolds

Alessio Figalli

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 117, page 147-166
  • ISSN: 0041-8994

How to cite

top

Figalli, Alessio. "The Monge problem on non-compact manifolds." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 147-166. <http://eudml.org/doc/108707>.

@article{Figalli2007,
author = {Figalli, Alessio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {147-166},
publisher = {Seminario Matematico of the University of Padua},
title = {The Monge problem on non-compact manifolds},
url = {http://eudml.org/doc/108707},
volume = {117},
year = {2007},
}

TY - JOUR
AU - Figalli, Alessio
TI - The Monge problem on non-compact manifolds
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 147
EP - 166
LA - eng
UR - http://eudml.org/doc/108707
ER -

References

top
  1. [1] L. AMBROSIO - N. GIGLI - G. SAVARÉ, Gradient flows in metric spaces and in the Wasserstein space of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. Zbl1090.35002MR2129498
  2. [2] L. AMBROSIO - A. PRATELLI, Existence and stability results in the L1 theory of optimal transportation. Lectures notes in Mathematics, Springer Verlag, 1813 (2003), pp. 123-160. Zbl1065.49026MR2006307
  3. [3] L. AMBROSIO, B. KIRCHHEIM - A. PRATELLI, Existence of optimal transport maps for crystalline norms. Duke Math. J., 125, no. 2 (2004), pp. 207-241. Zbl1076.49022MR2096672
  4. [4] P. BERNARD - B. BUFFONI, Optimal mass transportation and Mather theory. Journal of the European Mathematical Society, 9, no. 1 (2007), pp. 85-121. Zbl1241.49025MR2283105
  5. [5] P. BERNARD - B. BUFFONI, The Monge problem for supercritical Mañé potential on compact manifolds. Adv. Math., 207, no. 2 (2006), pp. 691-706. Zbl1137.49037MR2271983
  6. [6] G. CONTRERAS - J. DELGADO - R. ITURRIAGA, Lagrangians flows: the dynamics of globally minimizing orbits. II. Bol. Soc. Brasil. Mat. (N.S.), 28, no. 2 (1997), pp. 155-196. Zbl0892.58065MR1479500
  7. [7] A. FATHI, Weak KAM theorems in Lagrangian Dynamics. Book to appear. 
  8. [8] A. FATHI - A. FIGALLI, Optimal transportation on manifolds. Preprint, 2006. 
  9. [9] A. FATHI - E. MADERNA, Weak KAM theorem on noncompact manifolds. Nonlin. Diff. Eq. and Appl., to appear. Zbl1139.49027
  10. [10] M. FELDMAN - R. J. MCCANN, Monge's transport problem on a Riemannian manifold. Trans. Amer. Math. Soc., 354 (2002), pp. 1667-1697. Zbl1038.49041MR1873023
  11. [11] L. V. KANTOROVICH, On the transfer of masses. Dokl. Akad. Nauk. SSSR, 37 (1942), pp. 227-229. 
  12. [12] L. V. KANTOROVICH, On a problem of Monge. Uspekhi Mat.Nauk., 3 (1948), pp. 225-226. 
  13. [13] R. MANÕ, Lagrangians flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.), 28, no. 2 (1997), pp. 141-153. MR1479499
  14. [14] S. T. RACHEV - L. RUSCHENDORF, Mass transportation problems. Vol. I: Theory, Vol. II: Applications. Probability and ita applications, Springer, 1998. Zbl0990.60500MR1619170
  15. [15] C. VILLANI, Topics in optimal transportation. Graduate Studies in Mathematics, 58 (2004), American Mathematical Society, Providence, RI. Zbl1106.90001MR1964483
  16. [16] C. VILLANI, Optimal transport, old and new. Lecture notes, 2005 Saint-Flour summer school. MR2459454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.