A note on clean abelian groups

Brendan Goldsmith; Peter Vámos

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 117, page 181-191
  • ISSN: 0041-8994

How to cite

top

Goldsmith, Brendan, and Vámos, Peter. "A note on clean abelian groups." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 181-191. <http://eudml.org/doc/108710>.

@article{Goldsmith2007,
author = {Goldsmith, Brendan, Vámos, Peter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {units; idempotents; torsion-complete Abelian -groups; clean groups; totally projective -groups},
language = {eng},
pages = {181-191},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on clean abelian groups},
url = {http://eudml.org/doc/108710},
volume = {117},
year = {2007},
}

TY - JOUR
AU - Goldsmith, Brendan
AU - Vámos, Peter
TI - A note on clean abelian groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 181
EP - 191
LA - eng
KW - units; idempotents; torsion-complete Abelian -groups; clean groups; totally projective -groups
UR - http://eudml.org/doc/108710
ER -

References

top
  1. [1] V. CAMILLO - D. KHURANA - T. Y. LAM - W. K. NICHOLSON - Y. ZHOU, Continuous modules are clean, to appear in J. Algebra. Zbl1114.16023MR2255822
  2. [2] A. L. S. CORNER - R. GÖBEL, Prescribing endomorphism algebras - a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. Zbl0562.20030MR779399
  3. [3] L. FUCHS, Recent Results and Problems on Abelian Groups, in Topics in Abelian Groups, Scott Foresman (1963), pp. 9-40. MR169906
  4. [4] L. FUCHS, Infinite Abelian Groups,Vol. I & II, Academic Press 1970, 1973. Zbl0209.05503MR255673
  5. [5] B. GOLDSMITH - S. PABST - A. SCOTT, Unit Sum Numbers of Rings and Modules, Quart. J. Math., 49 (1998), pp. 331-344. Zbl0933.16035MR1645560
  6. [6] B. GOLDSMITH - C. MEEHAN - S. WALLUTIS, Torsion-free Groups and Modules with the Involution Property, to appear in Journal Pure and Applied Algebra. Zbl1109.20048MR2269834
  7. [7] J. HAN - W. K. NICHOLSON, Extensions of clean rings, Comm. Algebra, 29 (2001), pp. 2589-2596. Zbl0989.16015MR1845131
  8. [8] P. HILL, Endomorphism rings generated by units, Trans. Amer. Math. Soc., 141 (1969), pp. 99-105. Zbl0192.35603MR242944
  9. [9] I. KAPLANSKY, Infinite Abelian Groups, University of Michigan Press, Ann Arbour, 1954 and 1969. Zbl0057.01901MR233887
  10. [10] W. LIEBERT, Characterization of the Endomorphism Rings of Divisible Torsion Modules and Reduced Complete Torsion-Free Modules over Complete Discrete Valuation Rings, Pacific J. Math., 37 (1971), pp. 141-170. Zbl0214.05704MR310018
  11. [11] C. MEEHAN, Sums of Automorphisms of Free Abelian Groups and Modules, Proc. Royal Irish Academy, 104A (2004), pp. 59-66. Zbl1088.16001MR2139510
  12. [12] W. K. NICHOLSON, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), pp. 269-278. Zbl0352.16006MR439876
  13. [13] W. K. NICHOLSON - K. VARADARAJAN - Y. ZHOU, Clean endomorphism rings, to appear in Archiv der Mathematik. Zbl1067.16051MR2096806
  14. [14] M. Ó SEARCÓID, Perturbation of Linear Operators by Idempotents, Irish Math. Soc. Bulletin, 39 (1997), pp. 10-13. Zbl0902.47010MR1492337
  15. [15] R. S. PIERCE, Homomorphisms of Primary Abelian Groups, in Topics in Abelian Groups, Scott Foresman (1963), pp. 215-310. MR177035
  16. [16] L. SALCE, Struttura dei p-gruppi abeliani, Pitagora Editrice, Bologna, 1980. Zbl0599.20087
  17. [17] P. VÁMOS, 2 - Good Rings, Quart. J. Math., 56 (2005), pp. 417-430. Zbl1156.16303MR2161255
  18. [18] P. VÁMOS, Clean Rings, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.