A note on clean abelian groups
Brendan Goldsmith; Peter Vámos
Rendiconti del Seminario Matematico della Università di Padova (2007)
- Volume: 117, page 181-191
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGoldsmith, Brendan, and Vámos, Peter. "A note on clean abelian groups." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 181-191. <http://eudml.org/doc/108710>.
@article{Goldsmith2007,
author = {Goldsmith, Brendan, Vámos, Peter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {units; idempotents; torsion-complete Abelian -groups; clean groups; totally projective -groups},
language = {eng},
pages = {181-191},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on clean abelian groups},
url = {http://eudml.org/doc/108710},
volume = {117},
year = {2007},
}
TY - JOUR
AU - Goldsmith, Brendan
AU - Vámos, Peter
TI - A note on clean abelian groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 181
EP - 191
LA - eng
KW - units; idempotents; torsion-complete Abelian -groups; clean groups; totally projective -groups
UR - http://eudml.org/doc/108710
ER -
References
top- [1] V. CAMILLO - D. KHURANA - T. Y. LAM - W. K. NICHOLSON - Y. ZHOU, Continuous modules are clean, to appear in J. Algebra. Zbl1114.16023MR2255822
- [2] A. L. S. CORNER - R. GÖBEL, Prescribing endomorphism algebras - a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. Zbl0562.20030MR779399
- [3] L. FUCHS, Recent Results and Problems on Abelian Groups, in Topics in Abelian Groups, Scott Foresman (1963), pp. 9-40. MR169906
- [4] L. FUCHS, Infinite Abelian Groups,Vol. I & II, Academic Press 1970, 1973. Zbl0209.05503MR255673
- [5] B. GOLDSMITH - S. PABST - A. SCOTT, Unit Sum Numbers of Rings and Modules, Quart. J. Math., 49 (1998), pp. 331-344. Zbl0933.16035MR1645560
- [6] B. GOLDSMITH - C. MEEHAN - S. WALLUTIS, Torsion-free Groups and Modules with the Involution Property, to appear in Journal Pure and Applied Algebra. Zbl1109.20048MR2269834
- [7] J. HAN - W. K. NICHOLSON, Extensions of clean rings, Comm. Algebra, 29 (2001), pp. 2589-2596. Zbl0989.16015MR1845131
- [8] P. HILL, Endomorphism rings generated by units, Trans. Amer. Math. Soc., 141 (1969), pp. 99-105. Zbl0192.35603MR242944
- [9] I. KAPLANSKY, Infinite Abelian Groups, University of Michigan Press, Ann Arbour, 1954 and 1969. Zbl0057.01901MR233887
- [10] W. LIEBERT, Characterization of the Endomorphism Rings of Divisible Torsion Modules and Reduced Complete Torsion-Free Modules over Complete Discrete Valuation Rings, Pacific J. Math., 37 (1971), pp. 141-170. Zbl0214.05704MR310018
- [11] C. MEEHAN, Sums of Automorphisms of Free Abelian Groups and Modules, Proc. Royal Irish Academy, 104A (2004), pp. 59-66. Zbl1088.16001MR2139510
- [12] W. K. NICHOLSON, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), pp. 269-278. Zbl0352.16006MR439876
- [13] W. K. NICHOLSON - K. VARADARAJAN - Y. ZHOU, Clean endomorphism rings, to appear in Archiv der Mathematik. Zbl1067.16051MR2096806
- [14] M. Ó SEARCÓID, Perturbation of Linear Operators by Idempotents, Irish Math. Soc. Bulletin, 39 (1997), pp. 10-13. Zbl0902.47010MR1492337
- [15] R. S. PIERCE, Homomorphisms of Primary Abelian Groups, in Topics in Abelian Groups, Scott Foresman (1963), pp. 215-310. MR177035
- [16] L. SALCE, Struttura dei p-gruppi abeliani, Pitagora Editrice, Bologna, 1980. Zbl0599.20087
- [17] P. VÁMOS, 2 - Good Rings, Quart. J. Math., 56 (2005), pp. 417-430. Zbl1156.16303MR2161255
- [18] P. VÁMOS, Clean Rings, to appear.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.