The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on clean abelian groups”

Sylow P-Subgroups of Abelian Group Rings

Danchev, P. (2003)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary 20C07, 20K10, 20K20, 20K21; Secondary 16U60, 16S34. Let PG be the abelian modular group ring of the abelian group G over the abelian ring P with 1 and prime char P = p. In the present article,the p-primary components Up(PG) and S(PG) of the groups of units U(PG) and V(PG) are classified for some major classes of abelian groups. Suppose K is a first kind field with respect to p in char K ≠ p and A is an abelian p-group. In the...

A Note on Additive Groups of Some Specific Associative Rings

Mateusz Woronowicz (2016)

Annales Mathematicae Silesianae

Similarity:

Almost complete description of abelian groups (A, +, 0) such that every associative ring R with the additive group A satisfies the condition: every subgroup of A is an ideal of R, is given. Some new results for SR-groups in the case of associative rings are also achieved. The characterization of abelian torsion-free groups of rank one and their direct sums which are not nil-groups is complemented using only elementary methods.

Isomorphism of Commutative Modular Group Algebras

Danchev, P. (1997)

Serdica Mathematical Journal

Similarity:

∗ The work was supported by the National Fund “Scientific researches” and by the Ministry of Education and Science in Bulgaria under contract MM 70/91. Let K be a field of characteristic p > 0 and let G be a direct sum of cyclic groups, such that its torsion part is a p-group. If there exists a K-isomorphism KH ∼= KG for some group H, then it is shown that H ∼= G. Let G be a direct sum of cyclic groups, a divisible group or a simply presented torsion abelian group. Then...

A note on a theorem of Megibben

Peter Vassilev Danchev, Patrick Keef (2008)

Archivum Mathematicum

Similarity:

We prove that pure subgroups of thick Abelian p -groups which are modulo countable are again thick. This generalizes a result due to Megibben (Michigan Math. J. 1966). Some related results are also established.