Fibered cusp versus d -index theory

Sergiu Moroianu

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 117, page 193-203
  • ISSN: 0041-8994

How to cite

top

Moroianu, Sergiu. "Fibered cusp versus $d$-index theory." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 193-203. <http://eudml.org/doc/108711>.

@article{Moroianu2007,
author = {Moroianu, Sergiu},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {fibered cusp metric; exact -metric; Dirac operators; Fefferman metric},
language = {eng},
pages = {193-203},
publisher = {Seminario Matematico of the University of Padua},
title = {Fibered cusp versus $d$-index theory},
url = {http://eudml.org/doc/108711},
volume = {117},
year = {2007},
}

TY - JOUR
AU - Moroianu, Sergiu
TI - Fibered cusp versus $d$-index theory
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 193
EP - 203
LA - eng
KW - fibered cusp metric; exact -metric; Dirac operators; Fefferman metric
UR - http://eudml.org/doc/108711
ER -

References

top
  1. [1] J.-M. BISMUT - J. CHEEGER, h-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), pp. 33-70. Zbl0671.58037MR966608
  2. [2] E. LEICHTNAM - R. MAZZEO - P. PIAZZA, The index of Dirac operators on manifolds with fibered boundaries, to appear in Proc. Joint BeNeLuxFra Confer. Math., Ghent, May 20-22, 2005, Bull. Belg. Math. Soc. - Simon Stevin. Zbl1126.58009MR2293212
  3. [3] R. R. MAZZEO - R. B. MELROSE, Pseudodifferential operators on manifolds with fibered boundaries, Asian J. Math., 2 (1998), pp. 833-866. Zbl1125.58304MR1734130
  4. [4] R. B. MELROSE, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics 4, A. K. Peters, Wellesley, MA (1993). Zbl0796.58050MR1348401
  5. [5] R. B. MELROSE - F. ROCHON, Index in K-theory for families of fibred cusp operators, preprint math. DG/0507590. Zbl1126.58010
  6. [6] S. MOROIANU, Weyl laws on open manifolds, preprint math. DG/0310075. Zbl1131.58019MR2349766
  7. [7] W. MÜLLER, Manifolds with cusps of rank one. Spectral theory and L2 -index theorem, Lecture Notes in Math. 1244, Springer-Verlag, Berlin, 1987. Zbl0632.58001MR891654
  8. [8] B. VAILLANT, Index- and spectral theory for manifolds with generalized fibered cusps, Dissertation, Bonner Math. Schriften 344 (2001), Rheinische Friedrich-Wilhelms-Universität Bonn. Zbl1059.58018MR1933455

NotesEmbed ?

top

You must be logged in to post comments.