On the topology of the space of invertible pseudodifferential operators of order 0

Frédéric Rochon[1]

  • [1] State University of New York Department of Mathematics Stony Brook (USA)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 29-62
  • ISSN: 0373-0956

Abstract

top
The homotopy groups of the (stabilized) group G 0 ( X ) of invertible pseudodifferential operators of order zero acting on a smooth compact manifold X are given in terms of the K -theory of the cosphere bundle S * X . At the same time, it is shown that the subgroup of invertible compact perturbations of the identity is weakly retractible in G 0 ( X ) . The results are also adapted to the case of suspended operators. This gives applications in index theory and for the residue determinant of Simon Scott.

How to cite

top

Rochon, Frédéric. "Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0." Annales de l’institut Fourier 58.1 (2008): 29-62. <http://eudml.org/doc/10313>.

@article{Rochon2008,
abstract = {Les groupes d’homotopie du groupe (stabilisé) $G^\{0\}(X)$ des opérateurs pseudodifférentiels inversibles d’ordre zéro agissant sur une variété compacte sans bord $X$ sont calculés en termes de la $K$-théorie du fibré cosphérique $S^\{*\}X$. Du même coup, on montre que le sous-groupe des perturbations compactes inversibles de l’identité est faiblement rétractile dans $G^\{0\}(X)$. Les résultats sont aussi adaptés au cas des opérateurs suspendus. Des applications à la théorie de l’indice et pour le déterminant résiduel de Simon Scott sont aussi données.},
affiliation = {State University of New York Department of Mathematics Stony Brook (USA)},
author = {Rochon, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {opérateurs pseudodifférentiels; groupes d’homotopie; $K$-théorie; déterminant résiduel; pseudodifferential operators on compact manifolds; homotopy groups; -theory},
language = {fre},
number = {1},
pages = {29-62},
publisher = {Association des Annales de l’institut Fourier},
title = {Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0},
url = {http://eudml.org/doc/10313},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Rochon, Frédéric
TI - Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 29
EP - 62
AB - Les groupes d’homotopie du groupe (stabilisé) $G^{0}(X)$ des opérateurs pseudodifférentiels inversibles d’ordre zéro agissant sur une variété compacte sans bord $X$ sont calculés en termes de la $K$-théorie du fibré cosphérique $S^{*}X$. Du même coup, on montre que le sous-groupe des perturbations compactes inversibles de l’identité est faiblement rétractile dans $G^{0}(X)$. Les résultats sont aussi adaptés au cas des opérateurs suspendus. Des applications à la théorie de l’indice et pour le déterminant résiduel de Simon Scott sont aussi données.
LA - fre
KW - opérateurs pseudodifférentiels; groupes d’homotopie; $K$-théorie; déterminant résiduel; pseudodifferential operators on compact manifolds; homotopy groups; -theory
UR - http://eudml.org/doc/10313
ER -

References

top
  1. M. F. Atiyah, K-theory, (1967), Benjamin Zbl0159.53302MR224083
  2. M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemann geometry, I, Math. Proc. Cambridge Philos. Soc 77 (1975), 43-69 Zbl0297.58008MR397797
  3. M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemann geometry, III, Math. Proc. Cambridge Philos. Soc 79 (1976), 71-99 Zbl0325.58015MR397799
  4. M. F. Atiyah, I. M. Singer, The index of elliptic operators : I, Ann. of Math. 87 (1968), 484-530 Zbl0164.24001MR236950
  5. M. F. Atiyah, I. M. Singer, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119-138 Zbl0212.28603MR279833
  6. R. Bott, L. W. Tu, Differential forms in algebraic topology, (1982), Springer-Verlag, Berlin Zbl0496.55001MR658304
  7. L. Friedlander, V. Guillemin, Determinants of zeroth order operators, (2006) Zbl1140.58017
  8. P. B. Gilkey, The residue of the global η function at the origin, Adv. in Math. 40 (1981), 290-307 Zbl0469.58015MR624667
  9. V. Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. Math. 102 (1985), 184-201 Zbl0559.58025
  10. M. Kontsevich, S. Vishik, Geometry of determinants of elliptic operators, Func. Anal. on the Eve of the XXI century, Vol I, Pogress in mathematics 131 (1994), 173-197 Zbl0920.58061MR1373003
  11. R. Lauter, S. Moroianu, Fredholm theory for degenerate pseudodifferential operators on manifold with fibred boundaries, Comm. Partial Differential Equations 26 (2001), 233-283 Zbl0988.58011MR1842432
  12. R. Lauter, S. Moroianu, Homology of pseudodifferential operators on manifolds with fibered cusps, T. Am. Soc. 355 (2003), 3009-3046 Zbl1024.58012MR1974673
  13. R. Lauter, S. Moroianu, An index formula on manifolds with fibered cusp ends, J. Geom. Analysis 15 (2005), 261-283 Zbl1102.58012MR2152483
  14. E. Leichtnam, R. Mazzeo, P. Piazza, The index of Dirac operators on manifolds with fibred boundary Zbl1126.58009
  15. M. Lesch, H. Moscovici, M. Pflaum, Relative pairing in cyclic cohomology and divisor flows, (2006) Zbl1175.46066
  16. J.-M. Lescure, S. Paycha, Uniqueness of multiplicative determinants on elliptic pseudodifferential operators Zbl1193.58018
  17. R. Mazzeo, R. B. Melrose, Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math. 2 (1999), 833-866 Zbl1125.58304MR1734130
  18. R. B. Melrose, Lectures on microlocal analysis 
  19. R. B. Melrose, The eta invariant and families of pseudodifferential operators, Math. Res. Lett. 2 (1995), 541-561 Zbl0934.58025MR1359962
  20. R. B. Melrose, Geometric scattering theory, (1995), Cambridge University Press, Cambridge Zbl0849.58071MR1350074
  21. R. B. Melrose, V. Nistor, Homology of pseudodifferential operators I. Manifold with boundary Zbl0898.46060
  22. R. B. Melrose, F. Rochon, Boundaries, eta invariant and the determinant bundle, (2006) Zbl1196.58015
  23. R. B. Melrose, F. Rochon, Index in K-theory of families of fibred cusp operators, K-theory 37 (2006), 25-104 Zbl1126.58010MR2274670
  24. R. B. Melrose, F. Rochon, Periodicity and the determinant bundle, (2006) Zbl1130.58013
  25. S. Moroianu, Fibered cusp versus d-index theory Zbl1142.53039
  26. S. Moroianu, K-theory of suspended pseudo-differential operators, K-theory 28 (2003), 167-181 Zbl1025.19005MR1995875
  27. S. Moroianu, Homology of adiabatic pseudo-differential operators, Nagoya Math. J 175 (2004), 171-221 Zbl1113.58012MR2085316
  28. T. M. W. Nye, M. A. Singer, An L 2 -index theorem for Dirac operators on 𝕊 1 × 3 , Journal of Functional Analysis 177 (2000), 203-218 Zbl0973.58012MR1789949
  29. K. Okikiolu, The multiplicative anomaly for determinants of elliptic operators, Duke Math. J. 79 (1995), 723-750 Zbl0851.58048MR1355182
  30. S. Paycha, S. Scott, A Laurent expansion for regularized integrals of holomorphic symbols Zbl1125.58009
  31. F. Rochon, Bott periodicity for fibred cusp operators, J. Geom. Anal. 15 (2005), 685-722 Zbl1092.58014MR2203168
  32. S. Scott, The residue determinant, Comm. Part. Diff. Eqn. 30 (2005), 483-507 Zbl1236.58037MR2153505
  33. R. T. Seeley, Complex powers of an elliptic operator, (Proc. Sympos. Pure Math., Vol. X) Amer. Math. Soc. (1966), 288-307 Zbl0159.15504MR237943
  34. N. Steenrod, The topology of fibre bundles, (1999), Princeton University Press, New Jersey Zbl0054.07103MR1688579
  35. M. Wodzicki, Spectral asymmetry and zeta functions, Invent. math. 66 (1982), 115-135 Zbl0489.58030MR652650
  36. M. Wodzicki, Local invariants of spectral asymmetry, Invent. math. 75 (1984), 143-177 Zbl0538.58038MR728144
  37. M. Wodzicki, Non-commutative residue, Chapter I. Fundamentals, K-theory, Arithmetic and Geometry Springer Lecture notes 1289 (1987), 320-399 Zbl0649.58033MR923140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.