The p -adic local monodromy theorem for fake annuli

Kiran S. Kedlaya

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 101-146
  • ISSN: 0041-8994

How to cite

top

Kedlaya, Kiran S.. "The $p$-adic local monodromy theorem for fake annuli." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 101-146. <http://eudml.org/doc/108718>.

@article{Kedlaya2007,
author = {Kedlaya, Kiran S.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {101-146},
publisher = {Seminario Matematico of the University of Padua},
title = {The $p$-adic local monodromy theorem for fake annuli},
url = {http://eudml.org/doc/108718},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Kedlaya, Kiran S.
TI - The $p$-adic local monodromy theorem for fake annuli
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 101
EP - 146
LA - eng
UR - http://eudml.org/doc/108718
ER -

References

top
  1. [1] Y. ANDRÉ, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math., 148 (2002), pp. 285-317. Zbl1081.12003MR1906151
  2. [2] G. CHRISTOL, About a Tsuzuki theorem, in p-adic functional analysis (Ioannina, 2000), Lecture Notes in Pure and Appl. Math. 222, Dekker, New York, 2001, pp. 63-74. Zbl0986.14012MR1838282
  3. [3] G. CHRISTOL - Z. MEBKHOUT, Sur le théorème de l'indice des équations différentielles p-adiques. IV, Invent. Math., 143 (2001), pp. 629-672. Zbl1078.12501MR1817646
  4. [4] R. CREW, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Sci. École Norm. Sup., 31 (1998), pp. 717-763. Zbl0943.14008MR1664230
  5. [5] A.J. DE JONG, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math., 134 (1998), pp. 301-333. Zbl0929.14029MR1650324
  6. [6] C. FAVRE - M. JONSSON, The valuative tree, Lecture Notes in Math. 1853, Springer-Verlag, Berlin, 2004. Zbl1064.14024MR2097722
  7. [7] J.-M. FONTAINE, Représentations p-adiques des corps locaux. I, in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser, Boston, pp. 249-309. Zbl0743.11066MR1106901
  8. [8] R.L. GRAHAM - D.E. KNUTH - O. PATASHNIK, Concrete mathematics: a foundation for computer science, Addison-Wesley, Reading, MA, 1994. Zbl0668.00003MR1397498
  9. [9] N.M. KATZ, Une formule de congruence pour la fonction z, Exposé XXII in P. Deligne and N.M. Katz, Seminaire de Géométrie Algébrique du Bois-Marie 1967-1969: Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Math. 340, Springer-Verlag, Berlin, 1973. Zbl0258.00005MR354657
  10. [10] K.S. KEDLAYA, Descent theorems for overconvergent F-crystals, Ph.D. thesis, Massachusetts Institute of Technology, 2000, available at http://math.mit.edu/~kedlaya. 
  11. [11] K.S. KEDLAYA, A p-adic local monodromy theorem, Annals of Math., 160 (2004), pp. 93-184. Zbl1088.14005MR2119719
  12. [12] K.S. KEDLAYA, Full faithfulness for overconvergent F-isocrystals, in Geometric aspects of Dwork theory, de Gruyter, Berlin, 2004, pp. 819-835. Zbl1087.14018MR2099088
  13. [13] K.S. KEDLAYA, Local monodromy for p-adic differential equations: an overview, Intl. J. of Number Theory, 1 (2005), pp. 109-154. Zbl1107.12005MR2172335
  14. [14] K.S. KEDLAYA, Slope filtrations revisited, Doc. Math., 10 (2005), pp. 447-525. Zbl1081.14028MR2184462
  15. [15] K.S. KEDLAYA, Finiteness of rigid cohomology with coefficients, Duke Math. J., 134 (2006), pp. 15-97. Zbl1133.14019MR2239343
  16. [16] K.S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals, I: Unipotence and logarithmic extensions, arXiv preprint math.NT/0405069 (version of 20 Jan 2007); to appear in Compos. Math. Zbl1144.14012MR2360314
  17. [17] K.S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals, II: A valuation-theoretic approach, arXiv preprint math.NT/0508191 (version of 2 Sep 2007); to appear in Compos. Math.. Zbl1153.14015MR2422343
  18. [18] A.H.M. LEVELT, Jordan decomposition for a class of singular differential operators, Ark. Mat., 13 (1975), pp. 1-27. Zbl0305.34008MR500294
  19. [19] S. MATSUDA, Katz correspondence for quasi-unipotent overconvergent isocrystals, Compos. Math., 134 (2002), pp. 1-34. Zbl1101.14021MR1931960
  20. [20] S. MATSUDA, Conjecture on Abbes-Saito filtration and Christol-Mebkhout filtration, in Geometric aspects of Dwork theory, de Gruyter, Berlin, 2004, pp. 845-856. Zbl1174.11406MR2099090
  21. [21] Z. MEBKHOUT, Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. Math., 148 (2002), pp. 319-351. Zbl1071.12004MR1906152
  22. [22] P. RIBENBOIM, Théorie des valuations, second edition, Les Presses de l'Université de Montréal, Montréal, 1968. Zbl0139.26201MR249425
  23. [23] A. SHIHO, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo, 9 (2002), pp. 1-163. Zbl1057.14025MR1889223
  24. [24] N. TSUZUKI, Finite local monodromy of overconvergent unit-root F-isocrystals on a curve, Amer. J. Math. 120, (1998), pp. 1165-1190. Zbl0943.14007MR1657158
  25. [25] N. TSUZUKI, Slope filtration of quasi-unipotent overconvergent F-isocrystals, Ann. Inst. Fourier (Grenoble) 48 (1998), pp. 379-412. Zbl0907.14007MR1625537
  26. [26] M. VAQUIÉ, Valuations, in Resolution of singularities (Obergurgl, 1997), Progr. Math., 181, Birkhäuser, Basel, pp. 539-590. Zbl1003.13001MR1748635

NotesEmbed ?

top

You must be logged in to post comments.