The p -adic local monodromy theorem for fake annuli

Kiran S. Kedlaya

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 101-146
  • ISSN: 0041-8994

How to cite

top

Kedlaya, Kiran S.. "The $p$-adic local monodromy theorem for fake annuli." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 101-146. <http://eudml.org/doc/108718>.

@article{Kedlaya2007,
author = {Kedlaya, Kiran S.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {101-146},
publisher = {Seminario Matematico of the University of Padua},
title = {The $p$-adic local monodromy theorem for fake annuli},
url = {http://eudml.org/doc/108718},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Kedlaya, Kiran S.
TI - The $p$-adic local monodromy theorem for fake annuli
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 101
EP - 146
LA - eng
UR - http://eudml.org/doc/108718
ER -

References

top
  1. [1] Y. ANDRÉ, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math., 148 (2002), pp. 285-317. Zbl1081.12003MR1906151
  2. [2] G. CHRISTOL, About a Tsuzuki theorem, in p-adic functional analysis (Ioannina, 2000), Lecture Notes in Pure and Appl. Math. 222, Dekker, New York, 2001, pp. 63-74. Zbl0986.14012MR1838282
  3. [3] G. CHRISTOL - Z. MEBKHOUT, Sur le théorème de l'indice des équations différentielles p-adiques. IV, Invent. Math., 143 (2001), pp. 629-672. Zbl1078.12501MR1817646
  4. [4] R. CREW, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Sci. École Norm. Sup., 31 (1998), pp. 717-763. Zbl0943.14008MR1664230
  5. [5] A.J. DE JONG, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math., 134 (1998), pp. 301-333. Zbl0929.14029MR1650324
  6. [6] C. FAVRE - M. JONSSON, The valuative tree, Lecture Notes in Math. 1853, Springer-Verlag, Berlin, 2004. Zbl1064.14024MR2097722
  7. [7] J.-M. FONTAINE, Représentations p-adiques des corps locaux. I, in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser, Boston, pp. 249-309. Zbl0743.11066MR1106901
  8. [8] R.L. GRAHAM - D.E. KNUTH - O. PATASHNIK, Concrete mathematics: a foundation for computer science, Addison-Wesley, Reading, MA, 1994. Zbl0668.00003MR1397498
  9. [9] N.M. KATZ, Une formule de congruence pour la fonction z, Exposé XXII in P. Deligne and N.M. Katz, Seminaire de Géométrie Algébrique du Bois-Marie 1967-1969: Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Math. 340, Springer-Verlag, Berlin, 1973. Zbl0258.00005MR354657
  10. [10] K.S. KEDLAYA, Descent theorems for overconvergent F-crystals, Ph.D. thesis, Massachusetts Institute of Technology, 2000, available at http://math.mit.edu/~kedlaya. 
  11. [11] K.S. KEDLAYA, A p-adic local monodromy theorem, Annals of Math., 160 (2004), pp. 93-184. Zbl1088.14005MR2119719
  12. [12] K.S. KEDLAYA, Full faithfulness for overconvergent F-isocrystals, in Geometric aspects of Dwork theory, de Gruyter, Berlin, 2004, pp. 819-835. Zbl1087.14018MR2099088
  13. [13] K.S. KEDLAYA, Local monodromy for p-adic differential equations: an overview, Intl. J. of Number Theory, 1 (2005), pp. 109-154. Zbl1107.12005MR2172335
  14. [14] K.S. KEDLAYA, Slope filtrations revisited, Doc. Math., 10 (2005), pp. 447-525. Zbl1081.14028MR2184462
  15. [15] K.S. KEDLAYA, Finiteness of rigid cohomology with coefficients, Duke Math. J., 134 (2006), pp. 15-97. Zbl1133.14019MR2239343
  16. [16] K.S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals, I: Unipotence and logarithmic extensions, arXiv preprint math.NT/0405069 (version of 20 Jan 2007); to appear in Compos. Math. Zbl1144.14012MR2360314
  17. [17] K.S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals, II: A valuation-theoretic approach, arXiv preprint math.NT/0508191 (version of 2 Sep 2007); to appear in Compos. Math.. Zbl1153.14015MR2422343
  18. [18] A.H.M. LEVELT, Jordan decomposition for a class of singular differential operators, Ark. Mat., 13 (1975), pp. 1-27. Zbl0305.34008MR500294
  19. [19] S. MATSUDA, Katz correspondence for quasi-unipotent overconvergent isocrystals, Compos. Math., 134 (2002), pp. 1-34. Zbl1101.14021MR1931960
  20. [20] S. MATSUDA, Conjecture on Abbes-Saito filtration and Christol-Mebkhout filtration, in Geometric aspects of Dwork theory, de Gruyter, Berlin, 2004, pp. 845-856. Zbl1174.11406MR2099090
  21. [21] Z. MEBKHOUT, Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. Math., 148 (2002), pp. 319-351. Zbl1071.12004MR1906152
  22. [22] P. RIBENBOIM, Théorie des valuations, second edition, Les Presses de l'Université de Montréal, Montréal, 1968. Zbl0139.26201MR249425
  23. [23] A. SHIHO, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo, 9 (2002), pp. 1-163. Zbl1057.14025MR1889223
  24. [24] N. TSUZUKI, Finite local monodromy of overconvergent unit-root F-isocrystals on a curve, Amer. J. Math. 120, (1998), pp. 1165-1190. Zbl0943.14007MR1657158
  25. [25] N. TSUZUKI, Slope filtration of quasi-unipotent overconvergent F-isocrystals, Ann. Inst. Fourier (Grenoble) 48 (1998), pp. 379-412. Zbl0907.14007MR1625537
  26. [26] M. VAQUIÉ, Valuations, in Resolution of singularities (Obergurgl, 1997), Progr. Math., 181, Birkhäuser, Basel, pp. 539-590. Zbl1003.13001MR1748635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.