Modular permutations on

Francesco Del Castillo

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 147-158
  • ISSN: 0041-8994

How to cite

top

Del Castillo, Francesco. "Modular permutations on $\mathbb {Z}$." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 147-158. <http://eudml.org/doc/108719>.

@article{DelCastillo2007,
author = {Del Castillo, Francesco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {permutations of ; locally Abelian-by-finite groups; finitely generated Abelian-by-finite groups; commutator subgroup; infinite simple groups; modular permutation groups},
language = {eng},
pages = {147-158},
publisher = {Seminario Matematico of the University of Padua},
title = {Modular permutations on $\mathbb \{Z\}$},
url = {http://eudml.org/doc/108719},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Del Castillo, Francesco
TI - Modular permutations on $\mathbb {Z}$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 147
EP - 158
LA - eng
KW - permutations of ; locally Abelian-by-finite groups; finitely generated Abelian-by-finite groups; commutator subgroup; infinite simple groups; modular permutation groups
UR - http://eudml.org/doc/108719
ER -

References

top
  1. [1] M. R. DIXON - M. J. EVANS - H. SMITH, Embedding groups in locally (solubleby-finite) simple groups, Journal of Group Theory 9 (2006), pp. 383-395. Zbl1120.20030MR2226620
  2. [2] M. I. KARGAPOLOV - JU. I. MERZLJAKOV, Fundamentals of the Theory of Groups, Graduate Texts in Mathematics, vol. 62, Springer (1979). Zbl0549.20001MR551207
  3. [3] N. POUYANNE, On the number of permutations admitting an m-th root, The Electronic Journal of Combinatorics 9 (2002). Zbl0990.05003MR1887084
  4. [4] H. WIELANDT, Permutationsgruppe, Math. Inst. Univ. Tübingen (1955). [Translated in english: Finite Permutation Groups, Academic Press, New York (1964). Reprinted in Mathematische Werke, Walter de Gruyter, Berlin, Vol. 1 (1994), pp. 119-198.] 

NotesEmbed ?

top

You must be logged in to post comments.