-groups and pseudo-bad groups.
We show that there exist zero-symmetric simple nearrings with identity, which are not equiprime, solving a longstanding open problem.
Scriviamo ed . Cerchiamo gruppi con generatori tali che ed per alcuni numeri naturali , .
If is a class of groups, then a group is said to be minimal non -group if all its proper subgroups are in the class , but itself is not an -group. The main result of this note is that if is an integer and if is a minimal non (respectively, )-group, then is a finitely generated perfect group which has no non-trivial finite factor and such that is an infinite simple group; where (respectively, , ) denotes the class of nilpotent (respectively, nilpotent of class at most , locally...
In classifying certain infinite groups under minimal conditions it is needed to find non-simplicity criteria for the groups under consideration. We obtain some of such criteria as a consequence of the main result of the paper and the classification of finite simple groups.