Testing for Cotorsionness over Domains

László Fuchs; Rüdiger Göbel

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 85-99
  • ISSN: 0041-8994

How to cite

top

Fuchs, László, and Göbel, Rüdiger. "Testing for Cotorsionness over Domains." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 85-99. <http://eudml.org/doc/108731>.

@article{Fuchs2007,
author = {Fuchs, László, Göbel, Rüdiger},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {85-99},
publisher = {Seminario Matematico of the University of Padua},
title = {Testing for Cotorsionness over Domains},
url = {http://eudml.org/doc/108731},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Fuchs, László
AU - Göbel, Rüdiger
TI - Testing for Cotorsionness over Domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 85
EP - 99
LA - eng
UR - http://eudml.org/doc/108731
ER -

References

top
  1. [1] S. BAZZONI and L. SALCE, An independence result on cotorsion theories over valuation domains. Journ. Algebra, 243 (2001), pp. 294-320. Zbl1057.13501MR1851665
  2. [2] S. BAZZONI and L. SALCE, On strongly flat modules over integral domains, Rocky Mountain J. Math., 34 (2003), pp. 417-439. Zbl1062.13002MR2072788
  3. [3] L. BICAN - R. EL BASHIR - E. ENOCHS, All modules have flat covers, Bull. London Math. Soc., 33 (2001), pp. 385-390. Zbl1029.16002MR1832549
  4. [4] P.C. EKLOF - A.H. MEKLER, Almost Free Modules. North Holland (Amsterdam, 1990). Zbl0718.20027MR1055083
  5. [5] P.C. EKLOF - J. TRLIFAJ, How to make Ext vanish, Bull. London Math. Soc., 33 (2001), pp. 41-51. Zbl1030.16004MR1798574
  6. [6] E.E. ENOCHS - O.M.G. JENDA, Relative Homological Algebra, De Gruyter Exp. Math. Vol., 30 (Berlin, New York, 2000). Zbl0952.13001MR1753146
  7. [7] L. FUCHS - L. SALCE, Modules over non-Noetherian Domains (Amer. Math. Soc., 2001). Zbl0973.13001MR1794715
  8. [8] L. FUCHS - L. SALCE - J. TRLIFAJ, On strongly flat modules over Matlis domains, Rings, Modules, Algebras and Abelian Groups, Dekker Series of Lecture Notes in Pure and Applied Math., 236 (2004), pp. 205-218. Zbl1097.13013MR2050713
  9. [9] R. GÖBEL, Abelian groups with small cotorsion images, J. Austral. Math. Soc. Ser. A, 50 (1991), pp. 243-247. Zbl0731.20037MR1094921
  10. [10] R. GÖBEL - W. MAY, Independence in completions and endomorphism algebras, Forum Math., 1 (1989), pp. 215-226. Zbl0691.13004MR1005423
  11. [11] R. GÖBEL - R. PRELLE, Solution of two problems on cotorsion abelian groups, Arch. Math., 31 (1978), pp. 423-431. Zbl0387.20040MR526605
  12. [12] R. GÖBEL - J. TRLIFAJ, Endomorphism Algebras and Approximations of Modules (Walter de Gruyter Verlag, Berlin, 2006). Zbl1121.16002
  13. [13] D.K. HARRISON, Infinite abelian groups and homological methods, Ann. Math., 69 (1959), pp. 366-391. Zbl0100.02901MR104728
  14. [14] R.H. HUNTER, Balanced subgroups of abelian groups, Trans. Amer. Math. Soc., 215 (1976), pp. 81-89. Zbl0321.20035MR507068
  15. [15] T. JECH, Set Theory, Acad. Press (New York, 1978). Zbl0419.03028
  16. [16] S.B. LEE, On divisible modules over domains, Arch. Math., 53 (1989), pp. 259-262. Zbl0652.13007MR1006717
  17. [17] E. MATLIS, Cotorsion modules, Memoires Amer. Math. Soc., 49 (1964). Zbl0135.07801MR178025
  18. [18] L. SALCE, Cotorsion theories for abelian groups, Symposia Math., 23 (1978), pp. 11-32. Zbl0426.20044MR565595

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.