Testing for Cotorsionness over Domains
Rendiconti del Seminario Matematico della Università di Padova (2007)
- Volume: 118, page 85-99
- ISSN: 0041-8994
Access Full Article
topHow to cite
topFuchs, László, and Göbel, Rüdiger. "Testing for Cotorsionness over Domains." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 85-99. <http://eudml.org/doc/108731>.
@article{Fuchs2007,
author = {Fuchs, László, Göbel, Rüdiger},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {85-99},
publisher = {Seminario Matematico of the University of Padua},
title = {Testing for Cotorsionness over Domains},
url = {http://eudml.org/doc/108731},
volume = {118},
year = {2007},
}
TY - JOUR
AU - Fuchs, László
AU - Göbel, Rüdiger
TI - Testing for Cotorsionness over Domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 85
EP - 99
LA - eng
UR - http://eudml.org/doc/108731
ER -
References
top- [1] S. BAZZONI and L. SALCE, An independence result on cotorsion theories over valuation domains. Journ. Algebra, 243 (2001), pp. 294-320. Zbl1057.13501MR1851665
- [2] S. BAZZONI and L. SALCE, On strongly flat modules over integral domains, Rocky Mountain J. Math., 34 (2003), pp. 417-439. Zbl1062.13002MR2072788
- [3] L. BICAN - R. EL BASHIR - E. ENOCHS, All modules have flat covers, Bull. London Math. Soc., 33 (2001), pp. 385-390. Zbl1029.16002MR1832549
- [4] P.C. EKLOF - A.H. MEKLER, Almost Free Modules. North Holland (Amsterdam, 1990). Zbl0718.20027MR1055083
- [5] P.C. EKLOF - J. TRLIFAJ, How to make Ext vanish, Bull. London Math. Soc., 33 (2001), pp. 41-51. Zbl1030.16004MR1798574
- [6] E.E. ENOCHS - O.M.G. JENDA, Relative Homological Algebra, De Gruyter Exp. Math. Vol., 30 (Berlin, New York, 2000). Zbl0952.13001MR1753146
- [7] L. FUCHS - L. SALCE, Modules over non-Noetherian Domains (Amer. Math. Soc., 2001). Zbl0973.13001MR1794715
- [8] L. FUCHS - L. SALCE - J. TRLIFAJ, On strongly flat modules over Matlis domains, Rings, Modules, Algebras and Abelian Groups, Dekker Series of Lecture Notes in Pure and Applied Math., 236 (2004), pp. 205-218. Zbl1097.13013MR2050713
- [9] R. GÖBEL, Abelian groups with small cotorsion images, J. Austral. Math. Soc. Ser. A, 50 (1991), pp. 243-247. Zbl0731.20037MR1094921
- [10] R. GÖBEL - W. MAY, Independence in completions and endomorphism algebras, Forum Math., 1 (1989), pp. 215-226. Zbl0691.13004MR1005423
- [11] R. GÖBEL - R. PRELLE, Solution of two problems on cotorsion abelian groups, Arch. Math., 31 (1978), pp. 423-431. Zbl0387.20040MR526605
- [12] R. GÖBEL - J. TRLIFAJ, Endomorphism Algebras and Approximations of Modules (Walter de Gruyter Verlag, Berlin, 2006). Zbl1121.16002
- [13] D.K. HARRISON, Infinite abelian groups and homological methods, Ann. Math., 69 (1959), pp. 366-391. Zbl0100.02901MR104728
- [14] R.H. HUNTER, Balanced subgroups of abelian groups, Trans. Amer. Math. Soc., 215 (1976), pp. 81-89. Zbl0321.20035MR507068
- [15] T. JECH, Set Theory, Acad. Press (New York, 1978). Zbl0419.03028
- [16] S.B. LEE, On divisible modules over domains, Arch. Math., 53 (1989), pp. 259-262. Zbl0652.13007MR1006717
- [17] E. MATLIS, Cotorsion modules, Memoires Amer. Math. Soc., 49 (1964). Zbl0135.07801MR178025
- [18] L. SALCE, Cotorsion theories for abelian groups, Symposia Math., 23 (1978), pp. 11-32. Zbl0426.20044MR565595
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.