On a dynamical Brauer–Manin obstruction
Liang-Chung Hsia[1]; Joseph Silverman[2]
- [1] Department of Mathematics National Central University Chung-Li, 32054 Taiwan, R. O. C.
- [2] Mathematics Department Box 1917 Brown University Providence, RI 02912 USA
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 1, page 235-250
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHsia, Liang-Chung, and Silverman, Joseph. "On a dynamical Brauer–Manin obstruction." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 235-250. <http://eudml.org/doc/10874>.
@article{Hsia2009,
abstract = {Let $\varphi :X\rightarrow X$ be a morphism of a variety defined over a number field $K$, let $V\subset X$ be a $K$-subvariety, and let $\{\mathcal\{O\}\}_\varphi (P)=\lbrace \varphi ^n(P):n\ge 0\rbrace $ be the orbit of a point $P\in X(K)$. We describe a local-global principle for the intersection $V\cap \{\mathcal\{O\}\}_\varphi (P)$. This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of $V(K)$ are Brauer–Manin unobstructed for power maps on $\mathbb\{P\}^2$ in two cases: (1) $V$ is a translate of a torus. (2) $V$ is a line and $P$ has a preperiodic coordinate. A key tool in the proofs is the classical Bang–Zsigmondy theorem on primitive divisors in sequences. We also prove analogous local-global results for dynamical systems associated to endomoprhisms of abelian varieties.},
affiliation = {Department of Mathematics National Central University Chung-Li, 32054 Taiwan, R. O. C.; Mathematics Department Box 1917 Brown University Providence, RI 02912 USA},
author = {Hsia, Liang-Chung, Silverman, Joseph},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {arithmetic dynamical systems; local-global principle; Brauer–Manin obstruction; Arithmetic dynamics; Brauer-Manin obstruction},
language = {eng},
number = {1},
pages = {235-250},
publisher = {Université Bordeaux 1},
title = {On a dynamical Brauer–Manin obstruction},
url = {http://eudml.org/doc/10874},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Hsia, Liang-Chung
AU - Silverman, Joseph
TI - On a dynamical Brauer–Manin obstruction
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 235
EP - 250
AB - Let $\varphi :X\rightarrow X$ be a morphism of a variety defined over a number field $K$, let $V\subset X$ be a $K$-subvariety, and let ${\mathcal{O}}_\varphi (P)=\lbrace \varphi ^n(P):n\ge 0\rbrace $ be the orbit of a point $P\in X(K)$. We describe a local-global principle for the intersection $V\cap {\mathcal{O}}_\varphi (P)$. This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of $V(K)$ are Brauer–Manin unobstructed for power maps on $\mathbb{P}^2$ in two cases: (1) $V$ is a translate of a torus. (2) $V$ is a line and $P$ has a preperiodic coordinate. A key tool in the proofs is the classical Bang–Zsigmondy theorem on primitive divisors in sequences. We also prove analogous local-global results for dynamical systems associated to endomoprhisms of abelian varieties.
LA - eng
KW - arithmetic dynamical systems; local-global principle; Brauer–Manin obstruction; Arithmetic dynamics; Brauer-Manin obstruction
UR - http://eudml.org/doc/10874
ER -
References
top- A. S. Bang, Taltheoretiske Undersogelser. Tidsskrift Mat. 4(5) (1886), 70–80, 130–137.
- G. D. Birkhoff and H. S. Vandiver, On the integral divisors of . Ann. of Math. (2) 5(4) (1904), 173–180. Zbl35.0205.01MR1503541
- J. Cheon and S. Hahn, The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve. Acta Arith. 88(3) (1999), 219–222. Zbl0933.11029MR1683630
- B. Poonen and J. F. Voloch, The Brauer–Manin obstruction for subvarieties of abelian varieties over function fields. Annals of Math., to appear. Zbl1294.11110
- L. P. Postnikova and A. Schinzel, Primitive divisors of the expression in algebraic number fields. Mat. Sb. (N.S.) 75(117) (1968), 171–177. Zbl0195.33704MR223330
- V. Scharaschkin, Local-global problems and the Brauer–Manin obstruction. PhD thesis, University of Michigan, 1999. Zbl0938.11053
- A. Schinzel, Primitive divisors of the expression in algebraic number fields. J. Reine Angew. Math. 268/269 (1974), 27–33. Zbl0287.12014MR344221
- J.-P. Serre, Sur les groupes de congruence des variétés abéliennes. II. Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 731–737. Zbl0222.14025MR289513
- J. H. Silverman, Wieferich’s criterion and the -conjecture. J. Number Theory 30(2) (1988), 226–237. Zbl0654.10019MR961918
- J. H. Silverman, The Arithmetic of Elliptic Curves. Volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
- M. Stoll, Finite descent obstructions and rational points on curves. Algebra & Number Theory 1 (2007), 349–391. Zbl1167.11024MR2368954
- S.-W. Zhang, Distributions in algebraic dynamics. In Differential Geometry: A Tribute to Professor S.-S. Chern, Surv. Differ. Geom., Vol. X, pages 381–430. Int. Press, Boston, MA, 2006. Zbl1207.37057MR2408228
- K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3(1) (1892), 265–284. MR1546236
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.