Some fixed points theorems for multi-valued weakly uniform increasing operators
Rendiconti del Seminario Matematico della Università di Padova (2008)
- Volume: 120, page 217-226
- ISSN: 0041-8994
Access Full Article
topHow to cite
topAltun, Ishak, and Turkoglu, Duran. "Some fixed points theorems for multi-valued weakly uniform increasing operators." Rendiconti del Seminario Matematico della Università di Padova 120 (2008): 217-226. <http://eudml.org/doc/108743>.
@article{Altun2008,
author = {Altun, Ishak, Turkoglu, Duran},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {fixed point; multi-valued operator; partially ordered spaces; weakly uniform increasing operator},
language = {eng},
pages = {217-226},
publisher = {Seminario Matematico of the University of Padua},
title = {Some fixed points theorems for multi-valued weakly uniform increasing operators},
url = {http://eudml.org/doc/108743},
volume = {120},
year = {2008},
}
TY - JOUR
AU - Altun, Ishak
AU - Turkoglu, Duran
TI - Some fixed points theorems for multi-valued weakly uniform increasing operators
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 120
SP - 217
EP - 226
LA - eng
KW - fixed point; multi-valued operator; partially ordered spaces; weakly uniform increasing operator
UR - http://eudml.org/doc/108743
ER -
References
top- [1] A. BRTONDSTED, On a lemma of Bishop and Phelps, Pacific J. Math., 55 (1974), pp. 335-341. Zbl0248.46009MR380343
- [2] K. DEIMLING, Multivalued Differential Equations, De Gruyter, Berlin, 1992. Zbl0760.34002MR1189795
- [3] B. C. DHAGE - D. O'REGAN - R. P. AGARWAL, Common fixed point theorems for a pair of countably condensing mappings in ordered Banach spaces, J. Appl. Math. Stochastic Anal, 16, 3 (2003), pp. 243-248. Zbl1068.47071MR2010512
- [4] Y. FENG - S. LIU, Fixed point theorems for multi-valued increasing operators in partial ordered spaces, Soochow J. Math., 30, 4 (2004), pp. 461-469. Zbl1084.47046MR2106065
- [5] D. GUO - V. LAKSHMIKANTHAM, Nonlinear problems in abstract cones, Academic Press, New York, 1988. Zbl0661.47045MR959889
- [6] S. HEIKKILA - V. LAKSHMIKANTHAM, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Dekker, New York, 1994. Zbl0804.34001MR1280028
- [7] N. B. HUY, Fixed points of increasing multivalued operators and an application to the discontinuous elliptic equations, Nonlinear Anal. 51, 4 (2002), pp. 673-678. Zbl1157.47314MR1920344
- [8] N. B. HUY - N. H. KHANH, Fixed point for multivalued increasing operators, J. Math. Anal. Appl., 250, 1 (2000), pp. 368-371. Zbl0973.47043MR1893895
- [9] J. JACHYMSKI, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Anal., 52, 5 (2003), pp. 1455-1463. Zbl1030.54033MR1942571
- [10] J. JACHYMSKI, Caristi's fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl., 227, 1 (1998), pp. 55-67. Zbl0916.47044MR1652882
- [11] W. A. KIRK - L. M. SALIGA, The Brézis-Browder order principle and extensions of Caristi's theorem, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), Nonlinear Anal., 47, 4 (2001), pp. 2765-2778. Zbl1042.54506MR1972399
- [12] D. TURKOGLU - R. P. AGARWAL - D. O'REGAN - I. ALTUN, Some fixed point theorems for single-valued and multi-valued countably condensing weakly uniform isotone mappings, PanAmer. Math. J., 1 (1) (2005), pp. 57-68. Zbl1083.47042MR2111269
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.