A Construction of Stable Subharmonic Orbits in Monotone Time-periodic Dynamical Systems.
A simple proof is given of a basic surjectivity result for monotone operators. The proof is based on the dynamical systems method (DSM).
We generalize a Theorem of Koldunov [2] and prove that a disjointness proserving quasi-linear operator between Resz spaces has the Hammerstein property.
In order to save CPU-time in solving large systems of equations in function spaces we decompose the large system in subsystems and solve the subsystems by an appropriate method. We give a sufficient condition for the convergence of the corresponding procedure and apply the approach to differential algebraic systems.
In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.
We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.
In the paper [13] we proved a fixed point theorem for an operator , which satisfies a generalized Lipschitz condition with respect to a linear bounded operator , that is: The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator .
Maps defined on the interior of the standard non-negative cone in which are both homogeneous of degree and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous order-preserving continuous extension to the whole cone. It follows that the extension must have at least...
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
We consider the existence of at least one positive solution to the dynamic boundary value problem where is an arbitrary time scale with and satisfying , , , , and where the boundary conditions at and can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.