On the Chern Number of a Filtration
Maria Evelina Rossi; Giuseppe Valla
Rendiconti del Seminario Matematico della Università di Padova (2009)
- Volume: 121, page 201-222
- ISSN: 0041-8994
Access Full Article
topHow to cite
topRossi, Maria Evelina, and Valla, Giuseppe. "On the Chern Number of a Filtration." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 201-222. <http://eudml.org/doc/108757>.
@article{Rossi2009,
author = {Rossi, Maria Evelina, Valla, Giuseppe},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Hilbert function; Chern number; Sally module; filtration.},
language = {eng},
pages = {201-222},
publisher = {Seminario Matematico of the University of Padua},
title = {On the Chern Number of a Filtration},
url = {http://eudml.org/doc/108757},
volume = {121},
year = {2009},
}
TY - JOUR
AU - Rossi, Maria Evelina
AU - Valla, Giuseppe
TI - On the Chern Number of a Filtration
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 201
EP - 222
LA - eng
KW - Hilbert function; Chern number; Sally module; filtration.
UR - http://eudml.org/doc/108757
ER -
References
top- [1] M.F. ATHIYAH - I.G. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). Zbl0175.03601
- [2] W. BRUNS - J. HERZOG, Cohen-Macaylay rings, Revised edition, Cambridge Studies in Advanced Mathematics, 39 (Cambridge University Press, Cambridge, 1998). Zbl0909.13005MR1251956
- [3] A. CORSO, Sally modules of m-primary ideals in local rings, arXiv:math/ 0309027v1 [math.AC]. Zbl1188.13002MR2588863
- [4] J. ELIAS - G. VALLA, Rigid Hilbert functions, J. Pure and Applied Algebra, 71 (1991), pp. 19-41. Zbl0733.13007MR1107650
- [5] S. GOTO - K. NISHIDA, Hilbert coefficients and Buchsbaumness of the associated graded ring, J. Pure and Appl. Algebra, 181, no. 1 (2003), pp. 64-76. Zbl1089.13515MR1971805
- [6] A. GUERRIERI - M.E. ROSSI, Hilbert coefficients of Hilbert filtrations, J. Algebra, 199, no. 1 (1998), pp. 40-61. Zbl0899.13017MR1489353
- [7] S. HUCKABA - T. MARLEY, Hilbert coefficients and the depths of associated graded rings, J. London Math. Soc., 56 (1997), pp. 64-76. Zbl0910.13008MR1462826
- [8] C. HUNEKE - I. SWANSON, Integral closure of Ideals, Rings and Modules, London Mathematical Lecture Notes, Series 336 (Cambridge University Press, 2006). Zbl1117.13001MR2266432
- [9] C. POLINI - B. ULRICH - W. VASCONCELOS, Normalization of ideals and Briancon-Skoda numbers, Math. Research Letters, 12 (2005), pp. 827-842. Zbl1105.13005MR2189243
- [10] M.E. ROSSI - G. VALLA, Hilbert Functions of Filtered Modules, arXiv: 0710.2346v1 [math.AC]. Zbl1201.13003
- [11] J.P. SERRE, Algebre local multiplicite, Lecture Notes in Math., 11 (SpringerVerlag, Berlin, 1965). Zbl0142.28603MR201468
- [12] B. SINGH, Effect of a permissible blowing-up on the local Hilbert functions, Invent. Math., 26 (1974), pp. 201-212. Zbl0266.14005MR352097
- [13] J. STÜCKRAD - W. VOGEL, Buchsbaum rings and applications, (SpringerVerlag, Berlin, 1986). Zbl0606.13018MR881220
- [14] I. SWANSON, A note on analytic spread, Comm. in Algebra, 22, No. 2 (1994), pp. 407-411. Zbl0796.13006MR1255875
- [15] P. VALABREGA - G. VALLA, Form rings and regular sequences, Nagoya Math. J., 72 (1978), pp. 93-101. Zbl0362.13007MR514892
- [16] G. VALLA, On form rings which are Cohen-Macaulay, J. Algebra, 59 (1979), pp. 247-250. Zbl0428.13010MR540637
- [17] W. VASCONCELOS, Hilbert functions, analytic spread and Koszul homology, Contemp. Math., 159 (1994), pp. 401-422. Zbl0803.13012MR1266195
- [18] W. VASCONCELOS, The Chern numbers of local rings, Michigan Math. J., Vol. 57 (2008), pp. 725-743 Zbl1234.13005MR2492478
- [19] M. VAZ PINTO, Hilbert Functions and Sally modules, J. Algebra, 192 (1997), pp. 504-523. Zbl0878.13008MR1452676
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.