On the Chern Number of a Filtration

Maria Evelina Rossi; Giuseppe Valla

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 121, page 201-222
  • ISSN: 0041-8994

How to cite

top

Rossi, Maria Evelina, and Valla, Giuseppe. "On the Chern Number of a Filtration." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 201-222. <http://eudml.org/doc/108757>.

@article{Rossi2009,
author = {Rossi, Maria Evelina, Valla, Giuseppe},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Hilbert function; Chern number; Sally module; filtration.},
language = {eng},
pages = {201-222},
publisher = {Seminario Matematico of the University of Padua},
title = {On the Chern Number of a Filtration},
url = {http://eudml.org/doc/108757},
volume = {121},
year = {2009},
}

TY - JOUR
AU - Rossi, Maria Evelina
AU - Valla, Giuseppe
TI - On the Chern Number of a Filtration
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 201
EP - 222
LA - eng
KW - Hilbert function; Chern number; Sally module; filtration.
UR - http://eudml.org/doc/108757
ER -

References

top
  1. [1] M.F. ATHIYAH - I.G. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). Zbl0175.03601
  2. [2] W. BRUNS - J. HERZOG, Cohen-Macaylay rings, Revised edition, Cambridge Studies in Advanced Mathematics, 39 (Cambridge University Press, Cambridge, 1998). Zbl0909.13005MR1251956
  3. [3] A. CORSO, Sally modules of m-primary ideals in local rings, arXiv:math/ 0309027v1 [math.AC]. Zbl1188.13002MR2588863
  4. [4] J. ELIAS - G. VALLA, Rigid Hilbert functions, J. Pure and Applied Algebra, 71 (1991), pp. 19-41. Zbl0733.13007MR1107650
  5. [5] S. GOTO - K. NISHIDA, Hilbert coefficients and Buchsbaumness of the associated graded ring, J. Pure and Appl. Algebra, 181, no. 1 (2003), pp. 64-76. Zbl1089.13515MR1971805
  6. [6] A. GUERRIERI - M.E. ROSSI, Hilbert coefficients of Hilbert filtrations, J. Algebra, 199, no. 1 (1998), pp. 40-61. Zbl0899.13017MR1489353
  7. [7] S. HUCKABA - T. MARLEY, Hilbert coefficients and the depths of associated graded rings, J. London Math. Soc., 56 (1997), pp. 64-76. Zbl0910.13008MR1462826
  8. [8] C. HUNEKE - I. SWANSON, Integral closure of Ideals, Rings and Modules, London Mathematical Lecture Notes, Series 336 (Cambridge University Press, 2006). Zbl1117.13001MR2266432
  9. [9] C. POLINI - B. ULRICH - W. VASCONCELOS, Normalization of ideals and Briancon-Skoda numbers, Math. Research Letters, 12 (2005), pp. 827-842. Zbl1105.13005MR2189243
  10. [10] M.E. ROSSI - G. VALLA, Hilbert Functions of Filtered Modules, arXiv: 0710.2346v1 [math.AC]. Zbl1201.13003
  11. [11] J.P. SERRE, Algebre local multiplicite, Lecture Notes in Math., 11 (SpringerVerlag, Berlin, 1965). Zbl0142.28603MR201468
  12. [12] B. SINGH, Effect of a permissible blowing-up on the local Hilbert functions, Invent. Math., 26 (1974), pp. 201-212. Zbl0266.14005MR352097
  13. [13] J. STÜCKRAD - W. VOGEL, Buchsbaum rings and applications, (SpringerVerlag, Berlin, 1986). Zbl0606.13018MR881220
  14. [14] I. SWANSON, A note on analytic spread, Comm. in Algebra, 22, No. 2 (1994), pp. 407-411. Zbl0796.13006MR1255875
  15. [15] P. VALABREGA - G. VALLA, Form rings and regular sequences, Nagoya Math. J., 72 (1978), pp. 93-101. Zbl0362.13007MR514892
  16. [16] G. VALLA, On form rings which are Cohen-Macaulay, J. Algebra, 59 (1979), pp. 247-250. Zbl0428.13010MR540637
  17. [17] W. VASCONCELOS, Hilbert functions, analytic spread and Koszul homology, Contemp. Math., 159 (1994), pp. 401-422. Zbl0803.13012MR1266195
  18. [18] W. VASCONCELOS, The Chern numbers of local rings, Michigan Math. J., Vol. 57 (2008), pp. 725-743 Zbl1234.13005MR2492478
  19. [19] M. VAZ PINTO, Hilbert Functions and Sally modules, J. Algebra, 192 (1997), pp. 504-523. Zbl0878.13008MR1452676

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.