Right Sided Ideals and Multilinear Polynomials with Derivation on Prime Rings
Rendiconti del Seminario Matematico della Università di Padova (2009)
- Volume: 121, page 243-257
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDhara, Basudeb, and Sharma, R. K.. "Right Sided Ideals and Multilinear Polynomials with Derivation on Prime Rings." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 243-257. <http://eudml.org/doc/108760>.
@article{Dhara2009,
author = {Dhara, Basudeb, Sharma, R. K.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {prime rings; derivations; multilinear polynomials},
language = {eng},
pages = {243-257},
publisher = {Seminario Matematico of the University of Padua},
title = {Right Sided Ideals and Multilinear Polynomials with Derivation on Prime Rings},
url = {http://eudml.org/doc/108760},
volume = {121},
year = {2009},
}
TY - JOUR
AU - Dhara, Basudeb
AU - Sharma, R. K.
TI - Right Sided Ideals and Multilinear Polynomials with Derivation on Prime Rings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 243
EP - 257
LA - eng
KW - prime rings; derivations; multilinear polynomials
UR - http://eudml.org/doc/108760
ER -
References
top- [1] K. I. BEIDAR, Rings with generalized identities, Moscow Univ. Math. Bull., 33 (4) (1978), pp. 53-58. Zbl0407.16002
- [2] M. BRESÏAR, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (4) (1994), pp. 979-983. Zbl0820.16032MR1205483
- [3] C. M. CHANG, Power central values of derivations on multilinear polynomials, Taiwanese J. Math., 7 (2) (2003), pp. 329-338. Zbl1058.16032MR1978020
- [4] C. L. CHUANG, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (3) (1988), pp. 723-728. Zbl0656.16006MR947646
- [5] C. L. CHUANG - T. K. LEE, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 24 (2) (1996), pp. 177-185. Zbl0855.16029MR1401645
- [6] B. FELZENSZWALB, On a result of Levitzki, Canad. Math. Bull., 21 (1978), pp. 241-242. Zbl0395.16029MR491793
- [7] V. DE FILIPPIS - O. M. DI VINCENZO, Posner's second theorem, multilinear polynomials and vanishing derivations, J. Aust. Math. Soc., 76 (2004), pp. 357-368. Zbl1059.16024MR2053509
- [8] V. K. KHARCHENKO, Differential identity of prime rings, Algebra and Logic., 17 (1978), pp. 155-168. Zbl0423.16011MR541758
- [9] C. LANSKI, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (3) (1993), pp. 731-734. Zbl0821.16037MR1132851
- [10] C. LANSKI, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math., 134 (2) (1988), pp. 275-297. Zbl0614.16028MR961236
- [11] P. H. LEE - T. K. LEE, Derivations with engel conditions on multilinear polynomials, Proc. Amer. Math. Soc., 124 (9) (1996), pp. 2625-2629. Zbl0859.16031MR1327023
- [12] T. K. LEE, Power reduction property for generalized identities of one sided ideals, Algebra Colloquium, 3 (1996), pp. 19-24. Zbl0845.16017MR1374157
- [13] T. K. LEE, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc., 347 (1995), pp. 3159-3165. Zbl0845.16016MR1286000
- [14] T. K. LEE, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20 (1) (1992), pp. 27-38. Zbl0769.16017MR1166215
- [15] U. LERON, Nil and power central valued polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), pp. 97-103. Zbl0297.16010MR354764
- [16] W. S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), pp. 576-584. Zbl0175.03102MR238897
- [17] E. C. POSNER, Derivation in prime rings, Proc. Amer. Math. Soc., 8 (1957), pp. 1093-1100. Zbl0082.03003MR95863
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.