Idempotent Subreducts of Semimodules over Commutative Semirings

David Stanovsky

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 121, page 33-43
  • ISSN: 0041-8994

How to cite

top

Stanovsky, David. "Idempotent Subreducts of Semimodules over Commutative Semirings." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 33-43. <http://eudml.org/doc/108762>.

@article{Stanovsky2009,
author = {Stanovsky, David},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {idempotent reducts; semimodules; commutative semirings; idempotent algebras; Szendrei modes},
language = {eng},
pages = {33-43},
publisher = {Seminario Matematico of the University of Padua},
title = {Idempotent Subreducts of Semimodules over Commutative Semirings},
url = {http://eudml.org/doc/108762},
volume = {121},
year = {2009},
}

TY - JOUR
AU - Stanovsky, David
TI - Idempotent Subreducts of Semimodules over Commutative Semirings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 33
EP - 43
LA - eng
KW - idempotent reducts; semimodules; commutative semirings; idempotent algebras; Szendrei modes
UR - http://eudml.org/doc/108762
ER -

References

top
  1. [1] R. FREESE - R. MCKENZIE, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, 125 (Cambridge University Press, 1987). Zbl0636.08001MR909290
  2. [2] C. HERRMANN, Affine algebras in congruence modular varieties, Acta. Sci. Math., 41 (1979), pp. 119-125. Zbl0408.08003MR534504
  3. [3] J. JEZÏEK, Terms and semiterms, Comment. Math. Univ. Carolinae, 20 (1979), pp. 447-460. Zbl0413.08003MR550447
  4. [4] J. JEZÏEK - T. KEPKA, Medial groupoids, Rozpravy CÏSAV 93/2, 1983. Zbl0527.20044MR734873
  5. [5] J. JEZÏEK - T. KEPKA, Linear equational theories and semimodule representations, Int. J. Algebra Comput., 8 (1998), pp. 599-615. Zbl0944.08003MR1675018
  6. [6] K. KEARNES, Semilattice modes I: the associated semiring, Algebra Universalis, 34, 2 (1995), pp. 220-272. Zbl0848.08005MR1348951
  7. [7] A. KRAVCHENKO - A. PILITOWSKA - A. ROMANOWSKA - D. STANOVSKÝ, Differential modes, Internat. J. Algebra Comput., 18, 3 (2008), pp. 567-588. Zbl1144.08001MR2422073
  8. [8] R. MCKENZIE - G. MCNULTY - W. TAYLOR, Algebras, Lattices, Varieties, Volume I. Wadsworth & Brooks/Cole, 1987. Zbl0611.08001MR883644
  9. [9] A. ROMANOWSKA, Semi-affine modes and modals, Scientiae Mathematicae Japonicae, 61 (2005), pp. 159-194. Zbl1067.08001MR2111551
  10. [10] A. ROMANOWSKA - JDH SMITH, Modes. World Scientific, 2002. Zbl1012.08001MR1932199
  11. [11] A. ROMANOWSKA - A. ZAMOJSKA-DZIENIO, Embedding semilattice sums of cancellative modes into semimodules, Contributions to General Algebra, 13 (2001), pp. 295-303. Zbl0993.08004MR1854593
  12. [12] A. ROMANOWSKA - A. ZAMOJSKA-DZIENIO, Embedding sums of cancellative modes into semimodules, Czech. Math. J., 55, 4 (2005), pp. 975-991. Zbl1081.08003MR2184378
  13. [13] R. QUACKENBUSH, Quasi-affine algebras, Algebra Universalis, 20 (1985), pp. 318-327. Zbl0573.08003MR811692
  14. [14] M. STRONKOWSKI, On free modes, Comment. Math. Univ. Carolinae, 47, 4 (2006), pp. 561-568. Zbl1150.08304MR2337411
  15. [15] M. STRONKOWSKI, On embeddings of entropic algebras, PhD Thesis, Warsaw University of Technology, 2006. 
  16. [16] Á. SZENDREI, Identities satisfied by convex linear forms, Algebra Universalis, 12 (1981), pp. 103-122. Zbl0458.08006MR608653
  17. [17] Á. SZENDREI, Modules in general algebra, in: Contributions to General Algebra, 10 (Proc. Klagenfurt Conf., 1997), Verlag Johannes Heyn, Klagenfurt, 1998; pp. 41-53. Zbl0912.08001MR1648809
  18. [18] A. ZAMOJSKA-DZIENIO, Medial modes and rectangular algebras, Comment. Math. Univ. Carolinae, 47, 1 (2006), pp. 21-34. Zbl1138.08001MR2223964

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.