Abelian differential modes are quasi-affine
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 3, page 461-473
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topStanovský, David. "Abelian differential modes are quasi-affine." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 461-473. <http://eudml.org/doc/246383>.
@article{Stanovský2012,
abstract = {We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.},
author = {Stanovský, David},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differential modes; abelian algebras; quasi-affine algebras; subreducts of modules; differential modes; abelian algebra; quasi-affine algebra; subreducts of modules},
language = {eng},
number = {3},
pages = {461-473},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Abelian differential modes are quasi-affine},
url = {http://eudml.org/doc/246383},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Stanovský, David
TI - Abelian differential modes are quasi-affine
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 461
EP - 473
AB - We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.
LA - eng
KW - differential modes; abelian algebras; quasi-affine algebras; subreducts of modules; differential modes; abelian algebra; quasi-affine algebra; subreducts of modules
UR - http://eudml.org/doc/246383
ER -
References
top- Gumm H.P., 10.1007/BF02488013, Algebra Universalis 9 (1979), no. 1, 8–34. Zbl0414.08002MR0508666DOI10.1007/BF02488013
- Kearnes K., The structure of finite modes, manuscript, 1990's.
- Kearnes K., Subdirectly irreducible modes, Discuss. Math. Algebra Stochastic Methods 19 (1999), no. 1, 129–145. Zbl0948.08001MR1709965
- Kearnes K., Szendrei Á., 10.1142/S0218196798000247, Internat. J. Algebra Comput. 8 (1998), no. 4, 497–531. Zbl0923.08001MR1663558DOI10.1142/S0218196798000247
- Kravchenko A., Pilitowska A., Romanowska A., Stanovský D., 10.1142/S0218196708004561, Internat. J. Algebra Comput. 18 (2008), no. 3, 567–588. Zbl1144.08001MR2422073DOI10.1142/S0218196708004561
- Padmanabhan R., Penner P., 10.1007/s00012-006-1994-9, Algebra Universalis 55 (2006), no. 2–3, 355–368. Zbl1108.08006MR2280237DOI10.1007/s00012-006-1994-9
- Pilitowska A., Romanowska A., Stanovský D., 10.1142/S0218196709005305, Internat. J. Algebra Comput. 19 (2009), no. 5, 669–680. Zbl1173.08002MR2547063DOI10.1142/S0218196709005305
- Quackenbush R., 10.1007/BF01195141, Algebra Universalis 20 (1985), 318–327. Zbl0573.08003MR0811692DOI10.1007/BF01195141
- Romanowska A., Semi-affine modes and modals, Sci. Math. Jpn. 61 (2005), 159–194. Zbl1067.08001MR2111551
- Romanowska A.B., Smith J.D.H., Differential groupoids, Contributions to General Algebra 7 (1991), 283–290. Zbl0744.20055MR1143092
- Romanowska A., Smith J.D.H., Modes, World Scientific, River Edge, NJ, 2002. Zbl1060.08009MR1932199
- Smith J.D.H., Mal'cev varieties, Lecture Notes in Mathematics, 554, Springer, Berlin, 1976. Zbl0344.08002MR0432511
- Stanovský D., 10.4171/RSMUP/121-3, Rend. Semin. Mat. Univ. Padova 121 (2009), 33–43. Zbl1190.16054MR2542133DOI10.4171/RSMUP/121-3
- Stanovský D., Subdirectly irreducible differential modes, Internat. J. Algebra Comput.(to appear).
- Stronkowski M., 10.1142/S0218196709005470, Internat. J. Algebra Comput. 19 (2009), no. 8, 1025–1047. Zbl1193.08001MR2603717DOI10.1142/S0218196709005470
- Stronkowski M., Stanovský D., 10.1090/S0002-9939-10-10356-6, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2687–2699. Zbl1206.08002MR2644885DOI10.1090/S0002-9939-10-10356-6
- Szendrei Á., Modules in general algebra, Contributions to General Algebra 10 (1998), 41–53. Zbl0912.08001MR1648809
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.