Abelian differential modes are quasi-affine

David Stanovský

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 3, page 461-473
  • ISSN: 0010-2628

Abstract

top
We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.

How to cite

top

Stanovský, David. "Abelian differential modes are quasi-affine." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 461-473. <http://eudml.org/doc/246383>.

@article{Stanovský2012,
abstract = {We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.},
author = {Stanovský, David},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differential modes; abelian algebras; quasi-affine algebras; subreducts of modules; differential modes; abelian algebra; quasi-affine algebra; subreducts of modules},
language = {eng},
number = {3},
pages = {461-473},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Abelian differential modes are quasi-affine},
url = {http://eudml.org/doc/246383},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Stanovský, David
TI - Abelian differential modes are quasi-affine
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 461
EP - 473
AB - We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.
LA - eng
KW - differential modes; abelian algebras; quasi-affine algebras; subreducts of modules; differential modes; abelian algebra; quasi-affine algebra; subreducts of modules
UR - http://eudml.org/doc/246383
ER -

References

top
  1. Gumm H.P., 10.1007/BF02488013, Algebra Universalis 9 (1979), no. 1, 8–34. Zbl0414.08002MR0508666DOI10.1007/BF02488013
  2. Kearnes K., The structure of finite modes, manuscript, 1990's. 
  3. Kearnes K., Subdirectly irreducible modes, Discuss. Math. Algebra Stochastic Methods 19 (1999), no. 1, 129–145. Zbl0948.08001MR1709965
  4. Kearnes K., Szendrei Á., 10.1142/S0218196798000247, Internat. J. Algebra Comput. 8 (1998), no. 4, 497–531. Zbl0923.08001MR1663558DOI10.1142/S0218196798000247
  5. Kravchenko A., Pilitowska A., Romanowska A., Stanovský D., 10.1142/S0218196708004561, Internat. J. Algebra Comput. 18 (2008), no. 3, 567–588. Zbl1144.08001MR2422073DOI10.1142/S0218196708004561
  6. Padmanabhan R., Penner P., 10.1007/s00012-006-1994-9, Algebra Universalis 55 (2006), no. 2–3, 355–368. Zbl1108.08006MR2280237DOI10.1007/s00012-006-1994-9
  7. Pilitowska A., Romanowska A., Stanovský D., 10.1142/S0218196709005305, Internat. J. Algebra Comput. 19 (2009), no. 5, 669–680. Zbl1173.08002MR2547063DOI10.1142/S0218196709005305
  8. Quackenbush R., 10.1007/BF01195141, Algebra Universalis 20 (1985), 318–327. Zbl0573.08003MR0811692DOI10.1007/BF01195141
  9. Romanowska A., Semi-affine modes and modals, Sci. Math. Jpn. 61 (2005), 159–194. Zbl1067.08001MR2111551
  10. Romanowska A.B., Smith J.D.H., Differential groupoids, Contributions to General Algebra 7 (1991), 283–290. Zbl0744.20055MR1143092
  11. Romanowska A., Smith J.D.H., Modes, World Scientific, River Edge, NJ, 2002. Zbl1060.08009MR1932199
  12. Smith J.D.H., Mal'cev varieties, Lecture Notes in Mathematics, 554, Springer, Berlin, 1976. Zbl0344.08002MR0432511
  13. Stanovský D., 10.4171/RSMUP/121-3, Rend. Semin. Mat. Univ. Padova 121 (2009), 33–43. Zbl1190.16054MR2542133DOI10.4171/RSMUP/121-3
  14. Stanovský D., Subdirectly irreducible differential modes, Internat. J. Algebra Comput.(to appear). 
  15. Stronkowski M., 10.1142/S0218196709005470, Internat. J. Algebra Comput. 19 (2009), no. 8, 1025–1047. Zbl1193.08001MR2603717DOI10.1142/S0218196709005470
  16. Stronkowski M., Stanovský D., 10.1090/S0002-9939-10-10356-6, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2687–2699. Zbl1206.08002MR2644885DOI10.1090/S0002-9939-10-10356-6
  17. Szendrei Á., Modules in general algebra, Contributions to General Algebra 10 (1998), 41–53. Zbl0912.08001MR1648809

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.