Weak Krull-Schmidt for Infinite Direct Sums of Cyclically Presented Modules over Local Rings

Afshin Amini; Babak Amini; Alberto Facchini

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 122, page 39-54
  • ISSN: 0041-8994

How to cite

top

Amini, Afshin, Amini, Babak, and Facchini, Alberto. "Weak Krull-Schmidt for Infinite Direct Sums of Cyclically Presented Modules over Local Rings." Rendiconti del Seminario Matematico della Università di Padova 122 (2009): 39-54. <http://eudml.org/doc/108775>.

@article{Amini2009,
author = {Amini, Afshin, Amini, Babak, Facchini, Alberto},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {direct sums of cyclically presented modules over local rings; Krull-Schmidt theorem; direct sums of modules; epigeny classes; direct summands},
language = {eng},
pages = {39-54},
publisher = {Seminario Matematico of the University of Padua},
title = {Weak Krull-Schmidt for Infinite Direct Sums of Cyclically Presented Modules over Local Rings},
url = {http://eudml.org/doc/108775},
volume = {122},
year = {2009},
}

TY - JOUR
AU - Amini, Afshin
AU - Amini, Babak
AU - Facchini, Alberto
TI - Weak Krull-Schmidt for Infinite Direct Sums of Cyclically Presented Modules over Local Rings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 122
SP - 39
EP - 54
LA - eng
KW - direct sums of cyclically presented modules over local rings; Krull-Schmidt theorem; direct sums of modules; epigeny classes; direct summands
UR - http://eudml.org/doc/108775
ER -

References

top
  1. [1] B. AMINI - A. AMINI - A. FACCHINI, Equivalence of diagonal matrices over local rings, J. Algebra, 320 (2008), pp. 1288-1310. Zbl1158.16011MR2427644
  2. [2] F. W. ANDERSON - K. R. FULLER, Rings and Categories of Modules, Second edition, GTM 13 (Springer-Verlag, New York, 1992). Zbl0765.16001MR1245487
  3. [3] N. V. DUNG - A. FACCHINI, Weak Krull-Schmidt for infinite direct sums of uniserial modules, J. Algebra, 193 (1997), pp. 102-121. Zbl0885.16008MR1456570
  4. [4] A. FACCHINI, Krull-Schmidt fails for serial modules, Trans. Amer. Math. Soc., 348 (1996), pp. 4561-4575. Zbl0868.16003MR1376546
  5. [5] A. FACCHINI, Module Theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Math., 167 (Birkhäuser Verlag, Basel, 1998). Zbl0930.16001MR1634015
  6. [6] A. FACCHINI - P. PRÏÍHODA, Monogeny dimension relative to a fixed uniform module, J. Pure Appl. Algebra, 212, no. 9 (2008), pp. 2092-2104. Zbl1159.16003MR2422193
  7. [7] A. FACCHINI - P. PRÏÍHODA, Representations of the category of serial modules of finite Goldie dimension, in ``Models, Modules, and Abelian Groups'', R. Göbel and B. Goldsmith Eds., de Gruyter (Berlin-New York, 2008), pp. 463-486. Zbl1221.16009MR2513260
  8. [8] P. PRÏÍHODA, Weak Krull-Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension,J.Algebra281,no.1(2004),pp.332-341. Zbl1088.16008
  9. [9] P. PRÏÍHODA, A version of the weak Krull-Schmidt theorem for infinite direct sums of uniserial modules, Comm. Algebra, 34, no. 4 (2006), pp. 1479-1487. Zbl1098.16004MR2224888
  10. [10] G. PUNINSKI, Some model theory over an exceptional uniserial ring and decompositions of serial modules, J. London Math. Soc., 64, no. 2 (2001), pp. 311-326. Zbl1048.16003MR1853453
  11. [11] G. PUNINSKI, Some model theory over a nearly simple uniserial domain and decompositions of serial modules, J. Pure Appl. Algebra, 163, no. 3 (2001), pp. 319-337. Zbl1025.16005MR1852123
  12. [12] R. B. WARFIELD, JR., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), pp. 699-719. Zbl0172.04801MR242885

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.