Some new directions in -adic Hodge theory
- [1] Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 2, page 285-300
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKedlaya, Kiran S.. "Some new directions in $p$-adic Hodge theory." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 285-300. <http://eudml.org/doc/10881>.
@article{Kedlaya2009,
abstract = {We recall some basic constructions from $p$-adic Hodge theory, then describe some recent results in the subject. We chiefly discuss the notion of $B$-pairs, introduced recently by Berger, which provides a natural enlargement of the category of $p$-adic Galois representations. (This enlargement, in a different form, figures in recent work of Colmez, Bellaïche, and Chenevier on trianguline representations.) We also discuss results of Liu that indicate that the formalism of Galois cohomology, including Tate local duality, extends to $B$-pairs.},
affiliation = {Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA},
author = {Kedlaya, Kiran S.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {285-300},
publisher = {Université Bordeaux 1},
title = {Some new directions in $p$-adic Hodge theory},
url = {http://eudml.org/doc/10881},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Kedlaya, Kiran S.
TI - Some new directions in $p$-adic Hodge theory
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 285
EP - 300
AB - We recall some basic constructions from $p$-adic Hodge theory, then describe some recent results in the subject. We chiefly discuss the notion of $B$-pairs, introduced recently by Berger, which provides a natural enlargement of the category of $p$-adic Galois representations. (This enlargement, in a different form, figures in recent work of Colmez, Bellaïche, and Chenevier on trianguline representations.) We also discuss results of Liu that indicate that the formalism of Galois cohomology, including Tate local duality, extends to $B$-pairs.
LA - eng
UR - http://eudml.org/doc/10881
ER -
References
top- J. Bellaïche, G. Chenevier, -adic families of Galois representations and higher rank Selmer groups. Astérisque, to appear; arXiv preprint math/0602340v2 (2007).
- L. Berger, Représentations -adiques et équations différentielles. Invent. Math. 148 (2002), 219–284. Zbl1113.14016MR1906150
- L. Berger, An introduction to the theory of -adic representations. Geometric aspects of Dwork theory. Vol. I, de Gruyter, Berlin, 2004, 255–292. Zbl1118.11028MR2023292
- L. Berger, Construction de )-modules: représentations -adiques et -paires. Alg. and Num. Theory 2 (2008), 91–120. Zbl1219.11078MR2377364
- R. Coleman, B. Mazur, The eigencurve. Galois representations in arithmetic algebraic geometry (Durham, 1996), Cambridge Univ. Press, 1998, 1–113. Zbl0932.11030MR1696469
- P. Colmez, Représentations triangulines de dimension 2. Astérisque 319 (2008), 213–258. Zbl1168.11022MR2493219
- P. Colmez, Représentations de et -modules. Preprint (2007) available at http://www.math.jussieu.fr/~colmez/. MR2482309
- P. Colmez, La série principale unitaire de . Preprint (2007) available at http://www.math.jussieu.fr/~colmez/. MR902277
- P. Colmez, -modules et représentations du mirabolique de . Preprint (2007) available at http://www.math.jussieu.fr/~colmez/. MR2482309
- L. Herr, Sur la cohomologie galoisienne des corps -adiques. Bull. S.M.F. 126 (1998), 563–600. Zbl0967.11050MR1693457
- H. Hida, Galois representations into attached to ordinary cusp forms. Invent. Math. 85 (1986), 545–613. Zbl0612.10021MR848685
- K.S. Kedlaya, Slope filtrations for relative Frobenius. Astérisque 319 (2008), 259–301. Zbl1168.11053MR2493220
- M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture. Invent. Math. 153 (2003), 373–454. Zbl1045.11029MR1992017
- M. Kisin, Crystalline representations and -crystals. Algebraic geometry and number theory, Progress in Math. 253, Birkhäuser, Boston, 2006, 459–496. Zbl1184.11052MR2263197
- R. Liu, Cohomology and duality for -modules over the Robba ring. Int. Math. Res. Notices 2008, article ID rnm150 (32 pages). Zbl1248.11093MR2416996
- J.S. Milne, Arithmetic duality theorems. BookSurge, 2006. Zbl1127.14001MR2261462
- J. Pottharst, Triangulordinary Selmer groups. ArXiv preprint 0805.2572v1 (2008).
- W. Schmid, Variation of Hodge structure: the singularities of the period map. Invent. Math. 22 (1973), 211–319. Zbl0278.14003MR382272
- C.A. Weibel, An introduction to homological algebra. Cambridge Univ. Press, 1994. Zbl0797.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.