-rank differences for partitions without repeated odd parts
Jeremy Lovejoy[1]; Robert Osburn[2]
- [1] CNRS LIAFA Université Denis Diderot 2, Place Jussieu, Case 7014 F-75251 Paris Cedex 05, FRANCE
- [2] School of Mathematical Sciences University College Dublin Belfield Dublin 4
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 2, page 313-334
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLovejoy, Jeremy, and Osburn, Robert. "$M_2$-rank differences for partitions without repeated odd parts." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 313-334. <http://eudml.org/doc/10883>.
@article{Lovejoy2009,
abstract = {We prove formulas for the generating functions for $M_2$-rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.},
affiliation = {CNRS LIAFA Université Denis Diderot 2, Place Jussieu, Case 7014 F-75251 Paris Cedex 05, FRANCE; School of Mathematical Sciences University College Dublin Belfield Dublin 4},
author = {Lovejoy, Jeremy, Osburn, Robert},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {partitions; modular forms; generalized Lambert series},
language = {eng},
number = {2},
pages = {313-334},
publisher = {Université Bordeaux 1},
title = {$M_2$-rank differences for partitions without repeated odd parts},
url = {http://eudml.org/doc/10883},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Lovejoy, Jeremy
AU - Osburn, Robert
TI - $M_2$-rank differences for partitions without repeated odd parts
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 313
EP - 334
AB - We prove formulas for the generating functions for $M_2$-rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.
LA - eng
KW - partitions; modular forms; generalized Lambert series
UR - http://eudml.org/doc/10883
ER -
References
top- G. E. Andrews, A generalization of the Göllnitz-Gordon partition theorems. Proc. Amer. Math. Soc. 8 (1967), 945–952. Zbl0153.32801MR219497
- G.E. Andrews, Two theorems of Gauss and allied identities proven arithmetically. Pacific J. Math. 41 (1972), 563–578. Zbl0219.10021MR349572
- G.E. Andrews, The Mordell integrals and Ramanujan’s “lost” notebook. In: Analytic Numbere Theory, Lecture Notes in Mathematics 899. Springer-Verlag, New York, 1981, pp. 10–48. Zbl0482.33002MR654518
- G.E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks. Invent. Math. 169 (2007), 37–73. Zbl1214.11116MR2308850
- G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I. Springer, New York, 2005. Zbl1075.11001
- A.O.L. Atkin and H. Swinnerton-Dyer, Some properties of partitions. Proc. London Math. Soc. 66 (1954), 84–106. Zbl0055.03805MR60535
- A.O.L. Atkin and S.M. Hussain, Some properties of partitions. II. Trans. Amer. Math. Soc. 89 (1958), 184–200. Zbl0083.26201MR103872
- A. Berkovich and F. G. Garvan, Some observations on Dyson’s new symmetries of partitions. J. Combin. Theory, Ser. A 100 (2002), 61–93. Zbl1016.05003MR1932070
- K. Bringmann, K. Ono, and R. Rhoades, Eulerian series as modular forms. J. Amer. Math. Soc. 21 (2008), 1085–1104. Zbl1208.11065MR2425181
- S.H. Chan, Generalized Lambert series identities. Proc. London Math. Soc. 91 (2005), 598–622. Zbl1089.33012MR2180457
- S. Corteel and O. Mallet, Overpartitions, lattice paths, and Rogers-Ramanujan identities. J. Combin. Theory Ser. A 114 (2007), 1407–1437. Zbl1126.11056MR2360678
- F.G. Garvan, Generalizations of Dyson’s rank and non-Rogers-Ramanujan partitions. Manuscripta Math. 84 (1994), 343–359. Zbl0819.11043MR1291125
- G. Gasper and M. Rahman, Basic Hypergeometric Series. Cambridge Univ. Press, Cambridge, 1990. Zbl0695.33001MR1052153
- B. Gordon and R.J. McIntosh, Some eighth order mock theta functions. J. London Math. Soc. 62 (2000), 321–335. Zbl1031.11007MR1783627
- D. Hickerson, A proof of the mock theta conjectures. Invent. Math. 94 (1988), 639–660. Zbl0661.10059MR969247
- J. Lovejoy, Rank and conjugation for a second Frobenius representation of an overpartition. Ann. Comb. 12 (2008), 101–113. Zbl1147.11062MR2401139
- J. Lovejoy and R. Osburn, Rank differences for overpartitions. Quart. J. Math. (Oxford) 59 (2008), 257–273. Zbl1153.11052MR2428080
- P.A. MacMahon, The theory of modular partitions. Proc. Cambridge Phil. Soc. 21 (1923), 197–204. Zbl48.0154.01
- R.J. McIntosh, Second order mock theta functions. Canad. Math. Bull. 50 (2) (2007), 284–290. Zbl1133.11013MR2317449
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.