Page 1 Next

Displaying 1 – 20 of 369

Showing per page

A canonical map between Hecke algebras

Andrea Mori, Lea Terracini (1999)

Bollettino dell'Unione Matematica Italiana

Sia D un corpo di quaternioni indefinito su Q di discriminante Δ e sia Γ il gruppo moltiplicativo degli elementi di norma 1 in un ordine di Eichler di D di livello primo con Δ . Consideriamo lo spazio S k Γ delle forme cuspidali di peso k rispetto a Γ e la corrispondente algebra di Hecke H D . Utilizzando una versione della corrispondenza di Jacquet-Langlands tra rappresentazioni automorfe di D × e di G L 2 , realizziamo H D come quoziente dell'algebra di Hecke classica di livello N Δ . Questo risultato permette di...

A combinatorial interpretation of Serre's conjecture on modular Galois representations

Adriaan Herremans (2003)

Annales de l’institut Fourier

We state a conjecture concerning modular absolutely irreducible odd 2-dimensional representations of the absolute Galois group over finite fields which is purely combinatorial (without using modular forms) and proof that it is equivalent to Serre’s strong conjecture. The main idea is to replace modular forms with coefficients in a finite field of characteristic p , by their counterparts in the theory of modular symbols.

A condition for the rationality of certain elliptic modular forms over primes dividing the level

Andrea Mori (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let f be a weight k holomorphic automorphic form with respect to Γ 0 N . We prove a sufficient condition for the integrality of f over primes dividing N . This condition is expressed in terms of the values at particular C M curves of the forms obtained by iterated application of the weight k Maaß operator to f and extends previous results of the Author.

A larger GL 2 large sieve in the level aspect

Goran Djanković (2012)

Open Mathematics

In this paper we study the orthogonality of Fourier coefficients of holomorphic cusp forms in the sense of large sieve inequality. We investigate the family of GL 2 cusp forms modular with respect to the congruence subgroups Γ1(q), with additional averaging over the levels q ∼ Q. We obtain the orthogonality in the range N ≪ Q 2−δ for any δ > 0, where N is the length of linear forms in the large sieve.

A local large sieve inequality for cusp forms

Jonathan Wing Chung Lam (2014)

Journal de Théorie des Nombres de Bordeaux

We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.

A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang (2024)

Czechoslovak Mathematical Journal

Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

Currently displaying 1 – 20 of 369

Page 1 Next