A basis for the space of modular forms
Page 1 Next
Shinji Fukuhara (2012)
Acta Arithmetica
Andrea Mori, Lea Terracini (1999)
Bollettino dell'Unione Matematica Italiana
Sia un corpo di quaternioni indefinito su di discriminante e sia il gruppo moltiplicativo degli elementi di norma 1 in un ordine di Eichler di di livello primo con . Consideriamo lo spazio delle forme cuspidali di peso rispetto a e la corrispondente algebra di Hecke . Utilizzando una versione della corrispondenza di Jacquet-Langlands tra rappresentazioni automorfe di e di , realizziamo come quoziente dell'algebra di Hecke classica di livello . Questo risultato permette di...
Andrea Mori (1994)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Adriaan Herremans (2003)
Annales de l’institut Fourier
We state a conjecture concerning modular absolutely irreducible odd 2-dimensional representations of the absolute Galois group over finite fields which is purely combinatorial (without using modular forms) and proof that it is equivalent to Serre’s strong conjecture. The main idea is to replace modular forms with coefficients in a finite field of characteristic , by their counterparts in the theory of modular symbols.
Andrea Mori (1991)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Let be a weight holomorphic automorphic form with respect to . We prove a sufficient condition for the integrality of over primes dividing . This condition is expressed in terms of the values at particular curves of the forms obtained by iterated application of the weight Maaß operator to and extends previous results of the Author.
Karen Taylor (2012)
Acta Arithmetica
Goran Djanković (2012)
Open Mathematics
In this paper we study the orthogonality of Fourier coefficients of holomorphic cusp forms in the sense of large sieve inequality. We investigate the family of GL 2 cusp forms modular with respect to the congruence subgroups Γ1(q), with additional averaging over the levels q ∼ Q. We obtain the orthogonality in the range N ≪ Q 2−δ for any δ > 0, where N is the length of linear forms in the large sieve.
Jonathan Wing Chung Lam (2014)
Journal de Théorie des Nombres de Bordeaux
We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.
Walter R. Parry (1979)
Journal für die reine und angewandte Mathematik
Anton Deitmar, Nikolaos Diamantis (2010)
Acta Arithmetica
Youjun Wang (2024)
Czechoslovak Mathematical Journal
Let be a given integer. Let be the set of all normalized primitive holomorphic cusp forms of even integral weight for the full modulo group . For , denote by the th normalized Fourier coefficient of th symmetric power -function () attached to . We are interested in the average behaviour of the sum where is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
M. Karel (1982)
Compositio Mathematica
Anne-Maria Ernvall-Hytönen (2009)
Publications de l'Institut Mathématique
Andrew Knightly, Charles Li (2006)
Acta Arithmetica
Anatolii N. Andrianov (1980)
Mathematische Annalen
I. G. MacDonald (1980/1981)
Séminaire Bourbaki
Gerhard Kramarz (1985/1986)
Mathematische Annalen
Byungchan Kim (2011)
Acta Arithmetica
Bruno Harris (1988)
Compositio Mathematica
Takumi Noda (1995)
Acta Arithmetica
Page 1 Next