Wilson’s theorem
- [1] Harish-Chandra Research Institute Chhatnag Road, Jhunsi 211019 Allahabad, Inde
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 517-521
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDalawat, Chandan Singh. "Wilson’s theorem." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 517-521. <http://eudml.org/doc/10896>.
@article{Dalawat2009,
abstract = {We show how K. Hensel could have extended Wilson’s theorem from $\{\bf Z\}$ to the ring of integers $\mathfrak\{o\}$ in a number field, to find the product of all invertible elements of a finite quotient of $\mathfrak\{o\}$.},
affiliation = {Harish-Chandra Research Institute Chhatnag Road, Jhunsi 211019 Allahabad, Inde},
author = {Dalawat, Chandan Singh},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Wilson's theorem; prime number; prime ideal; finite extension},
language = {eng},
number = {3},
pages = {517-521},
publisher = {Université Bordeaux 1},
title = {Wilson’s theorem},
url = {http://eudml.org/doc/10896},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Dalawat, Chandan Singh
TI - Wilson’s theorem
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 517
EP - 521
AB - We show how K. Hensel could have extended Wilson’s theorem from ${\bf Z}$ to the ring of integers $\mathfrak{o}$ in a number field, to find the product of all invertible elements of a finite quotient of $\mathfrak{o}$.
LA - eng
KW - Wilson's theorem; prime number; prime ideal; finite extension
UR - http://eudml.org/doc/10896
ER -
References
top- C. Gauss, Disquisitiones arithmeticae. Gerh. Fleischer, Lipsiae, 1801, xviii+668 pp.
- K. Hensel, Die multiplikative Darstellung der algebraischen Zahlen für den Bereich eines beliebigen Primteilers. J. f. d. reine und angewandte Math., 146 (1916), pp. 189–215. Zbl46.0251.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.