A mean value theorem of Bombieri's type
Fix an element in a quadratic field . Define as the set of rational primes , for which has maximal order modulo . Under the assumption of the generalized Riemann hypothesis, we show that has a density. Moreover, we give necessary and sufficient conditions for the density of to be positive.
We consider the problem of determining whether a set of primes, or, more generally, prime ideals in a number field, can be realized as a finite union of residue classes, or of Frobenius conjugacy classes. We give necessary conditions for a set to be realized in this manner, and show that the subset of primes consisting of every other prime cannot be expressed in this way, even if we allow a finite number of exceptions.
We give an elementary proof of an explicit estimate for the number of primes splitting completely in an extension of the rationals. The proof uses binomial coefficents and extends Chebyshev's classical approach.
In 1989, E. Saias established an asymptotic formula for with a very good error term, valid for , , We extend this result to an algebraic number field by obtaining an asymptotic formula for the analogous function with the same error term and valid in the same region. Our main objective is to compare the formulae for and and in particular to compare the second term in the two expansions.