Principal component analysis : some majorisation, perturbation and nonnegative matrix theory

Frank Critchley

Statistique et analyse des données (1988)

  • Volume: 13, Issue: 1, page 8-14
  • ISSN: 0750-7364

How to cite

top

Critchley, Frank. "Principal component analysis : some majorisation, perturbation and nonnegative matrix theory." Statistique et analyse des données 13.1 (1988): 8-14. <http://eudml.org/doc/108961>.

@article{Critchley1988,
author = {Critchley, Frank},
journal = {Statistique et analyse des données},
language = {eng},
number = {1},
pages = {8-14},
publisher = {Association pour la statistique et ses illustrations},
title = {Principal component analysis : some majorisation, perturbation and nonnegative matrix theory},
url = {http://eudml.org/doc/108961},
volume = {13},
year = {1988},
}

TY - JOUR
AU - Critchley, Frank
TI - Principal component analysis : some majorisation, perturbation and nonnegative matrix theory
JO - Statistique et analyse des données
PY - 1988
PB - Association pour la statistique et ses illustrations
VL - 13
IS - 1
SP - 8
EP - 14
LA - eng
UR - http://eudml.org/doc/108961
ER -

References

top
  1. [1] BERMAN, A. and PLEMMONS, R.J., (1979), Non-negative matrices in the mathematical sciences, London: Academic Press. Zbl0484.15016MR544666
  2. [2] CRITCHLEY, F., (1983), The Euclideau structure of a dendrogram, Warwick Statistics Research Report No. 48. 
  3. [3] CRITCHLEY, F., (1985), Influence in principal components analysis, Biometrika, Vol. 72, pp. 627-636. Zbl0608.62068MR817577
  4. [4] FAN, K., (1949) and ( 1950), On a theorem of Weyl concerning eigenvalues of linear transformations I and II, Proc. Nat. Acad. Sci. U.S.A., Vol. 35, pp. 652-655 and Vol. 36, pp.31-35. Zbl0041.00602MR34519
  5. [5] FROBENIUS, G., (1908) and ( 1909), Über Matrizen aus positiven Elementen I and II, S.-B. Preuss. Akad. Wiss. (Berlin), pp. 471-476 and 514-518. Zbl39.0213.03JFM40.0202.02
  6. [6] HOPH, E., (1963), An inequality for positive integral linear operators, J. Math. and Mech., Vol. 12, pp. 683-692. Zbl0115.32501MR165325
  7. [7] HORN, A., (1954), Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math., Vol. 76, pp. 620-630. Zbl0055.24601MR63336
  8. [8] KENDALL, M.G. (1975), Multivariate analysis, London: Griffin. Zbl0551.62032
  9. [9] MARSHALL, A.W. and OLKIN, I., (1979), Inequalities: theory of majorization and its applications, London: Academic Press. Zbl0437.26007MR552278
  10. [10] MIRSKY, L., (1958), Matrices with prescribed characteristic roots and diagonal elements, J. London Math. Soc, Vol. 33, pp. 11-21. Zbl0101.25303MR91931
  11. [11] MORRISON, D.F., (1976), Multivariate statistical methods, London: McGraw-Hill. Zbl0355.62049MR408108
  12. [12] OSTROWSKI, A.M. (1963), On positive matrices, Math. Annalen. Vol. 150, pp. 276-284. Zbl0115.24803MR148680
  13. [13] PERRON, O. (1907), Zur Theorie der Über Matrizen, Math. Ann., Vol. 64, pp. 248-263. Zbl38.0202.01MR1511438JFM38.0202.01
  14. [14] RAO, C.R., (1973), Linear statistical inference and its applications, London: John Wiley. Zbl0137.36203MR346957
  15. [15] SCHUR, I., (1923), Über eine Klasse von Mittelbildungen mit Anwendungen die Determinanten, Theorie Sitzungsber. Berlin. Math. Gesellschaft, Vol. 22, pp.9-20. JFM49.0054.01
  16. [16] SIBSON, R. (1979), Studies in the robustness of multidimensional scaling: perturbational analysis of classical scaling, J. Royal Stat. Soc. B, Vol. 41, pp. 217-229. Zbl0413.62046MR547248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.