Hilbert-Speiser number fields and Stickelberger ideals
- [1] Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 589-607
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topIchimura, Humio. "Hilbert-Speiser number fields and Stickelberger ideals." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 589-607. <http://eudml.org/doc/10900>.
@article{Ichimura2009,
abstract = {Let $p$ be a prime number. We say that a number field $F$ satisfies the condition $(H_\{p^n\}^\{\prime\})$ when any abelian extension $N/F$ of exponent dividing $p^n$ has a normal integral basis with respect to the ring of $p$-integers. We also say that $F$ satisfies $(H_\{p^\{\infty \}\}^\{\prime\})$ when it satisfies $(H_\{p^n\}^\{\prime\})$ for all $n \ge 1$. It is known that the rationals $\mathbb\{Q\}$ satisfy $(H_\{p^\{\infty \}\}^\{\prime\})$ for all prime numbers $p$. In this paper, we give a simple condition for a number field $F$ to satisfy $(H_\{p^n\}^\{\prime\})$ in terms of the ideal class group of $K=F(\zeta _\{p^n\})$ and a “Stickelberger ideal” associated to the Galois group $\mbox \{\rm Gal\}(K/F)$. As an application, we give a candidate of an imaginary quadratic field $F$ which has a possibility of satisfying the very strong condition $(H_\{p^\{\infty \}\}^\{\prime\})$ for a small prime number $p$.},
affiliation = {Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan},
author = {Ichimura, Humio},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {normal integral basis; Stickelberger ideal},
language = {eng},
number = {3},
pages = {589-607},
publisher = {Université Bordeaux 1},
title = {Hilbert-Speiser number fields and Stickelberger ideals},
url = {http://eudml.org/doc/10900},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Ichimura, Humio
TI - Hilbert-Speiser number fields and Stickelberger ideals
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 589
EP - 607
AB - Let $p$ be a prime number. We say that a number field $F$ satisfies the condition $(H_{p^n}^{\prime})$ when any abelian extension $N/F$ of exponent dividing $p^n$ has a normal integral basis with respect to the ring of $p$-integers. We also say that $F$ satisfies $(H_{p^{\infty }}^{\prime})$ when it satisfies $(H_{p^n}^{\prime})$ for all $n \ge 1$. It is known that the rationals $\mathbb{Q}$ satisfy $(H_{p^{\infty }}^{\prime})$ for all prime numbers $p$. In this paper, we give a simple condition for a number field $F$ to satisfy $(H_{p^n}^{\prime})$ in terms of the ideal class group of $K=F(\zeta _{p^n})$ and a “Stickelberger ideal” associated to the Galois group $\mbox {\rm Gal}(K/F)$. As an application, we give a candidate of an imaginary quadratic field $F$ which has a possibility of satisfying the very strong condition $(H_{p^{\infty }}^{\prime})$ for a small prime number $p$.
LA - eng
KW - normal integral basis; Stickelberger ideal
UR - http://eudml.org/doc/10900
ER -
References
top- J. Buhler, C. Pomerance and L. Robertson, Heuristics for class numbers of prime-power real cyclotomic fields. Fields Inst. Commun., 41 (2004), 149–157. Zbl1106.11039MR2073643
- I. Del Corso and L. P. Rossi, Normal integral bases for cyclic Kummer extensions. Preprint, 1.356.1706, Dipartimento di Matematica, Universita’ di Pisa. Zbl1203.11074MR2558746
- A. Fröhlich, Stickelberger without Gauss sums. Algebraic Number Fields (Durham Symposium, 1975, ed. A. Fröhlich), 589–607, Academic Press, London, 1977. Zbl0376.12002MR450227
- A. Fröhlich and M. J. Taylor, Algebraic Number Theory. Cambridge Univ. Press, Cambridge, 1993. Zbl0744.11001MR1215934
- E. J. Gómez Ayala, Bases normales d’entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux, 6 (1994), 95–116. Zbl0822.11076MR1305289
- C. Greither, Cyclic Galois Extensions of Commutative Rings. Springer, Berlin, 1992. Zbl0788.13003MR1222646
- D. Hilbert, The Theory of Algebraic Number Fields. Springer, Berlin, 1998. Zbl0984.11001MR1646901
- K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field. J. London Math. Soc., 66 (2002), 257–275. Zbl1011.11072MR1920401
- H. Ichimura, On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra, 187 (2004), 169–182. Zbl1042.11074MR2027901
- H. Ichimura, On the ring of -integers of a cyclic -extension over a number field. J. Théor. Nombres Bordeaux, 17 (2005), 779–786. Zbl1153.11335MR2212125
- H. Ichimura, Stickelberger ideals and normal bases of rings of -integers. Math. J. Okayama Univ., 48 (2006), 9–20. Zbl1195.11145MR2291162
- H. Ichimura, A class number formula for the -cyclotomic field. Arch. Math. (Basel), 87 (2006),539–545. Zbl1120.11043MR2283685
- H. Ichimura, Triviality of Stickelberger ideals of conductor . J. Math. Sci. Univ. Tokyo, 13 (2006), 617–628. Zbl1219.11160MR2306221
- H. Ichimura, Hilbert-Speiser number fields for a prime inside the -cyclotomic field. J. Number Theory, 128 (2008), 858–864. Zbl1167.11042MR2400044
- H. Ichimura, On the parity of the class number of the -th cyclotomic field. Math. Slovaca, 59 (2009), 357–364. Zbl1212.11090MR2505815
- H. Ichimura and H. Sumida-Takahashi, Stickelberger ideals of conductor and their application. J. Math. Soc. Japan, 58 (2006), 885–902. Zbl1102.11059MR2254415
- I. Kersten and J. Michalicek, -extensions of complex multiplication fields. J. Number Theory, 32 (1989), 131–150. Zbl0709.11057MR1002468
- F. van der Linden, Class number computations of real abelian number fields. Math. Comp., 39 (1982), 639–707. Zbl0505.12010MR669662
- L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree. Algebraic Number Fields (Durham Symposium, 1975, ed. A. Fröhlich), 561–588, Academic Press, London, 1977. Zbl0389.12005MR457403
- L. R. McCulloh, Galois module structure of elementary abelian extensions. J. Algebra, 82 (1983), 102–134. Zbl0508.12008MR701039
- L. R. McCulloh, Galois module structure of abelian extensions. J. Reine Angew. Math., 375/376 (1987), 259–306. Zbl0619.12008MR882300
- K. Rubin, Euler Systems. Princeton Univ. Press, Princeton, 2000. Zbl0977.11001MR1749177
- W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field. Invent. Math., 62 (1980/81), 181–234. Zbl0465.12001MR595586
- L. C. Washington, Class numbers and -extensions. Math. Ann., 214 (1975),177–193. Zbl0302.12007MR364182
- L. C. Washington, The non--part of the class number in a cyclotomic -extension. Invent. Math., 49 (1978), 87–97. Zbl0403.12007MR511097
- L. C. Washington, Introduction to Cyclotomic Fields (2nd. ed). Springer, New York, 1997. Zbl0966.11047MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.