Hilbert-Speiser number fields and Stickelberger ideals

Humio Ichimura[1]

  • [1] Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 3, page 589-607
  • ISSN: 1246-7405

Abstract

top
Let p be a prime number. We say that a number field F satisfies the condition ( H p n ) when any abelian extension N / F of exponent dividing p n has a normal integral basis with respect to the ring of p -integers. We also say that F satisfies ( H p ) when it satisfies ( H p n ) for all n 1 . It is known that the rationals satisfy ( H p ) for all prime numbers p . In this paper, we give a simple condition for a number field F to satisfy ( H p n ) in terms of the ideal class group of K = F ( ζ p n ) and a “Stickelberger ideal” associated to the Galois group Gal ( K / F ) . As an application, we give a candidate of an imaginary quadratic field F which has a possibility of satisfying the very strong condition ( H p ) for a small prime number p .

How to cite

top

Ichimura, Humio. "Hilbert-Speiser number fields and Stickelberger ideals." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 589-607. <http://eudml.org/doc/10900>.

@article{Ichimura2009,
abstract = {Let $p$ be a prime number. We say that a number field $F$ satisfies the condition $(H_\{p^n\}^\{\prime\})$ when any abelian extension $N/F$ of exponent dividing $p^n$ has a normal integral basis with respect to the ring of $p$-integers. We also say that $F$ satisfies $(H_\{p^\{\infty \}\}^\{\prime\})$ when it satisfies $(H_\{p^n\}^\{\prime\})$ for all $n \ge 1$. It is known that the rationals $\mathbb\{Q\}$ satisfy $(H_\{p^\{\infty \}\}^\{\prime\})$ for all prime numbers $p$. In this paper, we give a simple condition for a number field $F$ to satisfy $(H_\{p^n\}^\{\prime\})$ in terms of the ideal class group of $K=F(\zeta _\{p^n\})$ and a “Stickelberger ideal” associated to the Galois group $\mbox \{\rm Gal\}(K/F)$. As an application, we give a candidate of an imaginary quadratic field $F$ which has a possibility of satisfying the very strong condition $(H_\{p^\{\infty \}\}^\{\prime\})$ for a small prime number $p$.},
affiliation = {Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan},
author = {Ichimura, Humio},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {normal integral basis; Stickelberger ideal},
language = {eng},
number = {3},
pages = {589-607},
publisher = {Université Bordeaux 1},
title = {Hilbert-Speiser number fields and Stickelberger ideals},
url = {http://eudml.org/doc/10900},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Ichimura, Humio
TI - Hilbert-Speiser number fields and Stickelberger ideals
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 589
EP - 607
AB - Let $p$ be a prime number. We say that a number field $F$ satisfies the condition $(H_{p^n}^{\prime})$ when any abelian extension $N/F$ of exponent dividing $p^n$ has a normal integral basis with respect to the ring of $p$-integers. We also say that $F$ satisfies $(H_{p^{\infty }}^{\prime})$ when it satisfies $(H_{p^n}^{\prime})$ for all $n \ge 1$. It is known that the rationals $\mathbb{Q}$ satisfy $(H_{p^{\infty }}^{\prime})$ for all prime numbers $p$. In this paper, we give a simple condition for a number field $F$ to satisfy $(H_{p^n}^{\prime})$ in terms of the ideal class group of $K=F(\zeta _{p^n})$ and a “Stickelberger ideal” associated to the Galois group $\mbox {\rm Gal}(K/F)$. As an application, we give a candidate of an imaginary quadratic field $F$ which has a possibility of satisfying the very strong condition $(H_{p^{\infty }}^{\prime})$ for a small prime number $p$.
LA - eng
KW - normal integral basis; Stickelberger ideal
UR - http://eudml.org/doc/10900
ER -

References

top
  1. J. Buhler, C. Pomerance and L. Robertson, Heuristics for class numbers of prime-power real cyclotomic fields. Fields Inst. Commun., 41 (2004), 149–157. Zbl1106.11039MR2073643
  2. I. Del Corso and L. P. Rossi, Normal integral bases for cyclic Kummer extensions. Preprint, 1.356.1706, Dipartimento di Matematica, Universita’ di Pisa. Zbl1203.11074MR2558746
  3. A. Fröhlich, Stickelberger without Gauss sums. Algebraic Number Fields (Durham Symposium, 1975, ed. A. Fröhlich), 589–607, Academic Press, London, 1977. Zbl0376.12002MR450227
  4. A. Fröhlich and M. J. Taylor, Algebraic Number Theory. Cambridge Univ. Press, Cambridge, 1993. Zbl0744.11001MR1215934
  5. E. J. Gómez Ayala, Bases normales d’entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux, 6 (1994), 95–116. Zbl0822.11076MR1305289
  6. C. Greither, Cyclic Galois Extensions of Commutative Rings. Springer, Berlin, 1992. Zbl0788.13003MR1222646
  7. D. Hilbert, The Theory of Algebraic Number Fields. Springer, Berlin, 1998. Zbl0984.11001MR1646901
  8. K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field. J. London Math. Soc., 66 (2002), 257–275. Zbl1011.11072MR1920401
  9. H. Ichimura, On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra, 187 (2004), 169–182. Zbl1042.11074MR2027901
  10. H. Ichimura, On the ring of p -integers of a cyclic p -extension over a number field. J. Théor. Nombres Bordeaux, 17 (2005), 779–786. Zbl1153.11335MR2212125
  11. H. Ichimura, Stickelberger ideals and normal bases of rings of p -integers. Math. J. Okayama Univ., 48 (2006), 9–20. Zbl1195.11145MR2291162
  12. H. Ichimura, A class number formula for the p -cyclotomic field. Arch. Math. (Basel), 87 (2006),539–545. Zbl1120.11043MR2283685
  13. H. Ichimura, Triviality of Stickelberger ideals of conductor p . J. Math. Sci. Univ. Tokyo, 13 (2006), 617–628. Zbl1219.11160MR2306221
  14. H. Ichimura, Hilbert-Speiser number fields for a prime p inside the p -cyclotomic field. J. Number Theory, 128 (2008), 858–864. Zbl1167.11042MR2400044
  15. H. Ichimura, On the parity of the class number of the 7 n -th cyclotomic field. Math. Slovaca, 59 (2009), 357–364. Zbl1212.11090MR2505815
  16. H. Ichimura and H. Sumida-Takahashi, Stickelberger ideals of conductor p and their application. J. Math. Soc. Japan, 58 (2006), 885–902. Zbl1102.11059MR2254415
  17. I. Kersten and J. Michalicek, p -extensions of complex multiplication fields. J. Number Theory, 32 (1989), 131–150. Zbl0709.11057MR1002468
  18. F. van der Linden, Class number computations of real abelian number fields. Math. Comp., 39 (1982), 639–707. Zbl0505.12010MR669662
  19. L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree. Algebraic Number Fields (Durham Symposium, 1975, ed. A. Fröhlich), 561–588, Academic Press, London, 1977. Zbl0389.12005MR457403
  20. L. R. McCulloh, Galois module structure of elementary abelian extensions. J. Algebra, 82 (1983), 102–134. Zbl0508.12008MR701039
  21. L. R. McCulloh, Galois module structure of abelian extensions. J. Reine Angew. Math., 375/376 (1987), 259–306. Zbl0619.12008MR882300
  22. K. Rubin, Euler Systems. Princeton Univ. Press, Princeton, 2000. Zbl0977.11001MR1749177
  23. W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field. Invent. Math., 62 (1980/81), 181–234. Zbl0465.12001MR595586
  24. L. C. Washington, Class numbers and p -extensions. Math. Ann., 214 (1975),177–193. Zbl0302.12007MR364182
  25. L. C. Washington, The non- p -part of the class number in a cyclotomic p -extension. Invent. Math., 49 (1978), 87–97. Zbl0403.12007MR511097
  26. L. C. Washington, Introduction to Cyclotomic Fields (2nd. ed). Springer, New York, 1997. Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.