On the ring of -integers of a cyclic -extension over a number field
- [1] Faculty of Science Ibaraki University 2-1-1, Bunkyo, Mito, Ibaraki, 310-8512 Japan
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 779-786
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topIchimura, Humio. "On the ring of $p$-integers of a cyclic $p$-extension over a number field." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 779-786. <http://eudml.org/doc/249450>.
@article{Ichimura2005,
abstract = {Let $p$ be a prime number. A finite Galois extension $N/F$ of a number field $F$ with group $G$ has a normal $p$-integral basis ($p$-NIB for short) when $\{\mathcal\{O\}\}_N^\{\prime\}$ is free of rank one over the group ring $\{\mathcal\{O\}\}_F^\{\prime\}[G]$. Here, $\mathcal\{O\}_F^\{\prime\}=\mathcal\{O\}_F[1/p]$ is the ring of $p$-integers of $F$. Let $m=p^e$ be a power of $p$ and $N/F$ a cyclic extension of degree $m$. When $\zeta _m \in F^\{\times \}$, we give a necessary and sufficient condition for $N/F$ to have a $p$-NIB (Theorem 3). When $\zeta _m \notin F^\{\times \}$ and $p \nmid [F(\zeta _m) : F]$, we show that $N/F$ has a $p$-NIB if and only if $N(\zeta _m)/F(\zeta _m)$ has a $p$-NIB (Theorem 1). When $p$ divides $[F(\zeta _m) : F]$, we show that this descent property does not hold in general (Theorem 2).},
affiliation = {Faculty of Science Ibaraki University 2-1-1, Bunkyo, Mito, Ibaraki, 310-8512 Japan},
author = {Ichimura, Humio},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {779-786},
publisher = {Université Bordeaux 1},
title = {On the ring of $p$-integers of a cyclic $p$-extension over a number field},
url = {http://eudml.org/doc/249450},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Ichimura, Humio
TI - On the ring of $p$-integers of a cyclic $p$-extension over a number field
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 779
EP - 786
AB - Let $p$ be a prime number. A finite Galois extension $N/F$ of a number field $F$ with group $G$ has a normal $p$-integral basis ($p$-NIB for short) when ${\mathcal{O}}_N^{\prime}$ is free of rank one over the group ring ${\mathcal{O}}_F^{\prime}[G]$. Here, $\mathcal{O}_F^{\prime}=\mathcal{O}_F[1/p]$ is the ring of $p$-integers of $F$. Let $m=p^e$ be a power of $p$ and $N/F$ a cyclic extension of degree $m$. When $\zeta _m \in F^{\times }$, we give a necessary and sufficient condition for $N/F$ to have a $p$-NIB (Theorem 3). When $\zeta _m \notin F^{\times }$ and $p \nmid [F(\zeta _m) : F]$, we show that $N/F$ has a $p$-NIB if and only if $N(\zeta _m)/F(\zeta _m)$ has a $p$-NIB (Theorem 1). When $p$ divides $[F(\zeta _m) : F]$, we show that this descent property does not hold in general (Theorem 2).
LA - eng
UR - http://eudml.org/doc/249450
ER -
References
top- J. Brinkhuis, Normal integral bases and the Spiegelungssatz of Scholz. Acta Arith. 69 (1995), 1–9. Zbl0838.11073MR1310838
- V. Fleckinger, T. Nguyen-Quang-Do, Bases normales, unités et conjecture faible de Leopoldt. Manus. Math. 71 (1991), 183–195. Zbl0732.11063MR1101268
- A. Fröhlich, M. J. Taylor, Algebraic Number Theory. Cambridge Univ. Press, Cambridge, 1991. Zbl0744.11001MR1215934
- E. J. Gómez Ayala, Bases normales d’entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux 6 (1994), 95–116. Zbl0822.11076MR1305289
- C. Greither, Cyclic Galois Extensions of Commutative Rings. Lect. Notes Math. 1534, Springer–Verlag, 1992. Zbl0788.13003MR1222646
- C. Greither, On normal integral bases in ray class fields over imaginary quadratic fields. Acta Arith. 78 (1997), 315–329. Zbl0866.11064MR1438589
- H. Ichimura, On a theorem of Childs on normal bases of rings of integers. J. London Math. Soc. (2) 68 (2003), 25–36: Addendum.ibid.69 (2004), 303–305. Zbl1048.11087MR1980241
- H. Ichimura, On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra 187 (2004), 169–182. Zbl1042.11074MR2027901
- H. Ichimura, Normal integral bases and ray class groups. Acta Arith. 114 (2004), 71–85. Zbl1065.11090MR2067873
- H. Ichimura, H. Sumida, On the Iwasawa invariants of certain real abelian fields. Tohoku J. Math. 49 (1997), 203–215. Zbl0886.11060MR1447182
- H. Ichimura, H. Sumida, A note on integral bases of unramified cyclic extensions of prime degree, II. Manus. Math. 104 (2001), 201–210. Zbl0991.11058MR1821183
- I. Kersten, J. Michalicek, On Vandiver’s conjecture and -extensions of . J. Number Theory 32 (1989), 371–386. Zbl0709.11058MR1006601
- H. Koch, Algebraic Number Theory. Springer, Berlin-Heidelberg-New York, 1997. Zbl0885.11001MR1474965
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.