On the ring of p -integers of a cyclic p -extension over a number field

Humio Ichimura[1]

  • [1] Faculty of Science Ibaraki University 2-1-1, Bunkyo, Mito, Ibaraki, 310-8512 Japan

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 3, page 779-786
  • ISSN: 1246-7405

Abstract

top
Let p be a prime number. A finite Galois extension N / F of a number field F with group G has a normal p -integral basis ( p -NIB for short) when 𝒪 N is free of rank one over the group ring 𝒪 F [ G ] . Here, 𝒪 F = 𝒪 F [ 1 / p ] is the ring of p -integers of F . Let m = p e be a power of p and N / F a cyclic extension of degree m . When ζ m F × , we give a necessary and sufficient condition for N / F to have a p -NIB (Theorem 3). When ζ m F × and p [ F ( ζ m ) : F ] , we show that N / F has a p -NIB if and only if N ( ζ m ) / F ( ζ m ) has a p -NIB (Theorem 1). When p divides [ F ( ζ m ) : F ] , we show that this descent property does not hold in general (Theorem 2).

How to cite

top

Ichimura, Humio. "On the ring of $p$-integers of a cyclic $p$-extension over a number field." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 779-786. <http://eudml.org/doc/249450>.

@article{Ichimura2005,
abstract = {Let $p$ be a prime number. A finite Galois extension $N/F$ of a number field $F$ with group $G$ has a normal $p$-integral basis ($p$-NIB for short) when $\{\mathcal\{O\}\}_N^\{\prime\}$ is free of rank one over the group ring $\{\mathcal\{O\}\}_F^\{\prime\}[G]$. Here, $\mathcal\{O\}_F^\{\prime\}=\mathcal\{O\}_F[1/p]$ is the ring of $p$-integers of $F$. Let $m=p^e$ be a power of $p$ and $N/F$ a cyclic extension of degree $m$. When $\zeta _m \in F^\{\times \}$, we give a necessary and sufficient condition for $N/F$ to have a $p$-NIB (Theorem 3). When $\zeta _m \notin F^\{\times \}$ and $p \nmid [F(\zeta _m) : F]$, we show that $N/F$ has a $p$-NIB if and only if $N(\zeta _m)/F(\zeta _m)$ has a $p$-NIB (Theorem 1). When $p$ divides $[F(\zeta _m) : F]$, we show that this descent property does not hold in general (Theorem 2).},
affiliation = {Faculty of Science Ibaraki University 2-1-1, Bunkyo, Mito, Ibaraki, 310-8512 Japan},
author = {Ichimura, Humio},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {779-786},
publisher = {Université Bordeaux 1},
title = {On the ring of $p$-integers of a cyclic $p$-extension over a number field},
url = {http://eudml.org/doc/249450},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Ichimura, Humio
TI - On the ring of $p$-integers of a cyclic $p$-extension over a number field
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 779
EP - 786
AB - Let $p$ be a prime number. A finite Galois extension $N/F$ of a number field $F$ with group $G$ has a normal $p$-integral basis ($p$-NIB for short) when ${\mathcal{O}}_N^{\prime}$ is free of rank one over the group ring ${\mathcal{O}}_F^{\prime}[G]$. Here, $\mathcal{O}_F^{\prime}=\mathcal{O}_F[1/p]$ is the ring of $p$-integers of $F$. Let $m=p^e$ be a power of $p$ and $N/F$ a cyclic extension of degree $m$. When $\zeta _m \in F^{\times }$, we give a necessary and sufficient condition for $N/F$ to have a $p$-NIB (Theorem 3). When $\zeta _m \notin F^{\times }$ and $p \nmid [F(\zeta _m) : F]$, we show that $N/F$ has a $p$-NIB if and only if $N(\zeta _m)/F(\zeta _m)$ has a $p$-NIB (Theorem 1). When $p$ divides $[F(\zeta _m) : F]$, we show that this descent property does not hold in general (Theorem 2).
LA - eng
UR - http://eudml.org/doc/249450
ER -

References

top
  1. J. Brinkhuis, Normal integral bases and the Spiegelungssatz of Scholz. Acta Arith. 69 (1995), 1–9. Zbl0838.11073MR1310838
  2. V. Fleckinger, T. Nguyen-Quang-Do, Bases normales, unités et conjecture faible de Leopoldt. Manus. Math. 71 (1991), 183–195. Zbl0732.11063MR1101268
  3. A. Fröhlich, M. J. Taylor, Algebraic Number Theory. Cambridge Univ. Press, Cambridge, 1991. Zbl0744.11001MR1215934
  4. E. J. Gómez Ayala, Bases normales d’entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux 6 (1994), 95–116. Zbl0822.11076MR1305289
  5. C. Greither, Cyclic Galois Extensions of Commutative Rings. Lect. Notes Math. 1534, Springer–Verlag, 1992. Zbl0788.13003MR1222646
  6. C. Greither, On normal integral bases in ray class fields over imaginary quadratic fields. Acta Arith. 78 (1997), 315–329. Zbl0866.11064MR1438589
  7. H. Ichimura, On a theorem of Childs on normal bases of rings of integers. J. London Math. Soc. (2) 68 (2003), 25–36: Addendum.ibid.69 (2004), 303–305. Zbl1048.11087MR1980241
  8. H. Ichimura, On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra 187 (2004), 169–182. Zbl1042.11074MR2027901
  9. H. Ichimura, Normal integral bases and ray class groups. Acta Arith. 114 (2004), 71–85. Zbl1065.11090MR2067873
  10. H. Ichimura, H. Sumida, On the Iwasawa invariants of certain real abelian fields. Tohoku J. Math. 49 (1997), 203–215. Zbl0886.11060MR1447182
  11. H. Ichimura, H. Sumida, A note on integral bases of unramified cyclic extensions of prime degree, II. Manus. Math. 104 (2001), 201–210. Zbl0991.11058MR1821183
  12. I. Kersten, J. Michalicek, On Vandiver’s conjecture and p -extensions of ( ζ p ) . J. Number Theory 32 (1989), 371–386. Zbl0709.11058MR1006601
  13. H. Koch, Algebraic Number Theory. Springer, Berlin-Heidelberg-New York, 1997. Zbl0885.11001MR1474965

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.